首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclease reactivity and specificity of a cloned tract of poly X (dA-dT) X poly(dA-dT) has been explored. Digestion with DNAse I, Mung Bean nuclease, S1 nuclease, DNAse II, and copper (1,10-phenanthroline)2 on a 256 base pair restriction fragment containing d(AT)14A revealed a dinucleotide repeat structure for the alternating sequence. Furthermore, conditions which wind or unwind the linear DNA had little effect on the reactivity of the AT insert. These preferred cleavages offer insights to structural alterations within the DNA helix which differ from A, B, or Z-DNA. Nucleation into flanking sequences by this structural alteration was not observed.  相似文献   

2.
Distamycin is a potent, wide-spectrum inhibitor of the breaking of both free and intranuclear DNA with DNAse I and with own nuclear nucleases. It compares very favourably with actinomycin D, proflavin and ethidium bromide, especially in the inhibition of DNAse I action in the nuclei. This seems likely to be due to partial overlapping of the binding sites of the nuclei with chromatin proteins in contrast to distamycin that interacts with a minor furrow of DNA being blocked to a less extent by proteins. The DNA-tropic agents under test exert no qualitative effect on the kinetics of intranuclear DNA splitting by DNAse I. Carminomycin and bleomycin are the least effective inhibitors in all the systems depicted.  相似文献   

3.
Triple helix formation at (AT)n adjacent to an oligopurine tract.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used DNase I footprinting to investigate the recognition of (AT) n tracts in duplex DNA using GT-containing oligonucleotides designed to form alternating G.TA and T.AT triplets. Previous studies have shown that the formation of these complexes is facilitated by anchoring the triplex with a block of adjacent T.AT triplets, i.e. using T11(TG)6to recognize the target A11(AT)6. (AT)6T11. In the present study we have examined how the stability of these complexes is affected by the length of either the T.AT tract or the region of alternating G.TA and T.AT triplets, using oligonucleotides of type T x (TG) y to recognize the sequence A11(AT)11. We find that successful triplex formation at (AT)n (n = 3, 6 or 11) can be achieved with a stabilizing tail of 11xT.AT triplets. The affinity of the third strand increases with the length of the (GT) n tract, suggesting that the alternating G.TA and T.AT triplets are making a positive contribution to stability. These complexes are stabilized by the presence of manganese or a triplex-specific binding ligand. Shorter oligo-nucleotides, such as T7(TG)5, bind less tightly and require the addition of a triplex-binding ligand. T4(GT)5showed no binding under any conditions. Oligo-nucleotides forming a 3'-terminal T.AT are marginally more stable that those with a terminal G.TA. The stability of these complexes was further increased by replacing two of the T.AT triplets in the T n tail region with two C+.GC triplets.  相似文献   

4.
5.
Angiotensin IV (Ang IV), the 3-8 fragment of angiotensin II (Ang II), binds to a distinct receptor designated the AT(4) receptor. The peptide elicits a range of vascular and central actions including facilitation of memory retention and retrieval in several learning paradigms. The aim of this study was to characterize the AT(4) receptor in a human cell line of neural origin. Receptor binding studies indicate that the human neuroblastoma cell line SK-N-MC cells express a high-affinity Ang IV binding site with a pharmacological profile similar to the AT(4) receptor: (125)I]-Ang IV and (125)I]-Nle(1)-Ang IV bind specifically to the SK-N-MC cell membranes (K(d) = 0.6 and 0.1 nM) in a saturable manner (B(max) = 1.2 pmol/mg of protein). AT(4) receptor ligands, Nle(1)-Ang IV, Ang IV and LVV-haemorphin 7 (LVV-H7), compete for the binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to the SK-N-MC cell membranes with rank order potencies of Nle(1)-Ang IV > Ang IV > LVV-H7 with IC(50) values of 1.4, 8.7 and 59 nM ([(125)I]-Ang IV) and 1.8, 20 and 168 nM ([(125)I]-Nle(1)-Ang IV), respectively. The binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to SK-N-MC cell membranes was not affected by the presence of GTP gamma S. Both Ang IV and LVV-H7 stimulated DNA synthesis in this cell line up to 72 and 81% above control levels, respectively. The AT(4) receptor in the SK-N-MC cells is a 180-kDa glycoprotein; under non-reducing conditions a 250-kDa band was also observed. In summary, the human neuroblastoma cell line, SK-N-MC, expresses functional AT(4) receptors that are responsive to Ang IV and LVV-H7, as indicated by an increase in DNA synthesis. This is the first human cell line of neural origin shown to express the AT(4) receptor.  相似文献   

6.
Antithrombin III deficient patients with manifest thromboembolic diseases need long term coumarin treatment. There are contradictory data on the change of AT III during this therapy. The authors observed 5 patients with severe AT III decrease type I, 3 with functional abnormality and 2 with a pathological heparin binding. AT III function was determined by the Gerendás-Rák method and with chromogenic substrate. AT III antigen was measured with Behring M-Partigen and Laurell rocket electrophoresis. Crossed immunoelectrophoresis was carried out in all patients. In patients with type I AT III decrease, AT III hasn't changed even in a long period of more than 10 years. In the other types AT III became normal. The pathological heparin binding wasn't changed.  相似文献   

7.
The effect of actinomycin on the structure of DNA fragments containing the sequences (AT)5GC(AT)5, (TA)5GC(TA)5, A9GCT9, and T9GCA9, cloned into the SmaI site of pUC19, has been studied by footprinting analysis using a variety of probes known to be sensitive to DNA structure. In each case clear footprints are found around the central GC sites. DNase I cleavage of fragments containing alternating AT shows much greater cutting at ApT than TpA; in the presence of actinomycin, although this preference is retained, there is a large increase in the cutting efficiency at the closest TpA steps. DNase I cleavage in homopolymeric regions of A and T, which is normally very poor, is greatly enhanced by drug binding. With T9GCA9 the enhancements are propagated in both directions, whereas changes are only found to the 5'-side of the GC site in A9GCT9. The results are confirmed by similar experiments with micrococcal nuclease and DNase II. Small increases in sensitivity to diethylpyrocarbonate are found at adenines proximal to GC. Experiments performed at 4 degrees C suggest that conformational changes are a necessary consequence of drug binding.  相似文献   

8.
Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo.   总被引:18,自引:8,他引:10       下载免费PDF全文
A 34 base pair tract of the simple repeating dinucleotide d(AT)n-d(AT)n cloned into a 2.4 kb polylinker plasmid vector undergoes a structural transition in response to negative superhelical coiling. The transition has been characterized by 2 dimensional gel electrophoresis, mapping of S1, P1 and T7 endonuclease 1 sensitive sites, and mapping of sites that are sensitive to modification by bromoacetaldehyde. After S1 nuclease treatment it is possible to trap supercoiled species that are nicked on one or both strands near the center of the palindrome. These data show that the alternate state adopted by the d(AT)n-dAT)n insert is a cruciform rather than a Z conformation. Unlike other B-cruciform transitions the transition in d(AT)n-d(AT)n has a low activation energy and the transition is facilitated by the presence of magnesium ions. Evidence from in-vivo topoisomer distributions is presented which shows that under conditions of blocked protein synthesis the d(AT)n-d(AT)n insert will spontaneously adopt the cruciform state in-vivo in E. coli.  相似文献   

9.
Tropomyosin polymerization is inhibited by DNAse I, an endonuclease which also interacts with G-actin. A 1:4 molar ratio of DNAse I to adult chicken pectoralis muscle tropomyosin almost completely prevents the increased viscosity of tropomyosin under polymerizing ionic conditions. While G-actin binding to DNAse I inhibits the DNAse I hydrolysis of DNA, tropomyosin does not affect this enzymatic activity. G-actin-DNAse I interaction is also not altered by tropomyosin.  相似文献   

10.
Central infusion of angiotensin IV or its more stable analogues facilitates memory retention and retrieval in normal animals and reverses amnesia induced by scopolamine or by bilateral perforant pathway lesions. These peptides bind with high affinity and specificity to a novel binding site designated the angiotensin AT(4) receptor. Until now, the AT(4) receptor has eluded molecular characterization. Here we identify the AT(4) receptor, by protein purification and peptide sequencing, to be insulin-regulated aminopeptidase (IRAP). HEK 293T cells transfected with IRAP exhibit typical AT(4) receptor binding characteristics; the AT(4) receptor ligands, angiotensin IV and LVV-hemorphin 7, compete for the binding of [(125)I]Nle(1)-angiotensin IV with IC(50) values of 32 and 140 nm, respectively. The distribution of IRAP and its mRNA in the brain, determined by immunohistochemistry and hybridization histochemistry, parallels that of the AT(4) receptor determined by radioligand binding. We also show that AT(4) receptor ligands dose-dependently inhibit the catalytic activity of IRAP. We have therefore demonstrated that the AT(4) receptor is IRAP and propose that AT(4) receptor ligands may exert their effects by inhibiting the catalytic activity of IRAP thereby extending the half-life of its neuropeptide substrates.  相似文献   

11.
We have prepared DNA fragments containing the sequences A15CGT15, T15CGA15 and T(AT)8CG(AT)15 cloned within the SmaI site of the pUC19 polylinker. These have been used as substrates in footprinting experiments with DNase I and diethylpyrocarbonate probing the effects of echinomycin, binding to the central CG, on the structure of the surrounding sequences. No clear DNase I footprints are seen with T15CGA15 though alterations in the nuclease susceptibility of surrounding regions suggest that the ligand is binding, albeit weakly at this site. All the other fragments show the expected footprints around the CG site. Regions of An and Tn are rendered much more reactive to DNase I and adenines on the 3'-side of the CG become hyperreactive to diethylpyrocarbonate. Regions of alternating AT show unusual changes in the presence of the ligand. At low concentrations (5 microM) cleavage of TpA is enhanced, whereas at higher concentrations a cleavage pattern with a four base pair repeat is evident. A similar pattern is seen with micrococcal nuclease. Modification by diethylpyrocarbonate is strongest at alternate adenines which are staggered in the 5'-direction across the two strands. We interpret these changes by suggesting secondary drug binding within regions of alternating AT, possibly to the dinucleotide ApT. DNase I footprinting experiments performed at 4 degrees C revealed neither enhancements nor footprints for flanking regions of homopolymeric A and T suggesting that the conformational changes are necessary consequence of drug binding.  相似文献   

12.
Qu X  Ren J  Riccelli PV  Benight AS  Chaires JB 《Biochemistry》2003,42(41):11960-11967
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms. Our results reveal a pronounced enthalpy-entropy compensation for 7-amino actinomycin D binding to this family of oligonucleotides and suggest that the DNA sequences flanking the primary binding site can strongly influence ligand recognition of specific sites on target DNA molecules.  相似文献   

13.
The binding modes of the free-base meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) complexed with [d(AT)n]2 oligonucleotides (where n=3-8, corresponding to 6 to 16 AT base pairs) were studied by circular dichroism (CD). When associated with the shortest oligonucleotide, ([d(AT)3]2), a bisignate CD spectrum was produced in the Soret absorption region at the mixing ratio between 2.0 and 0.25, corresponding to one TMPyP per 0.5 to 4 oligonucleotides. Apparent bisignate CD was attributed to a stacked TMPyP along the DNA. On the other hand, when the oligonucleotide length reaches one helical turn or longer, ([d(AT)n]2, n=6,7,8), TMPyP exhibited a positive CD signal, that corresponds to the monomeric groove binding mode, at the mixing ratio below 1.0 (one TMPyP per oligonucleotide). As the mixing ratio increases, the CD signal was best accounted for by the sum of the stacked and groove-binding TMPyP. At the intermediate oligonucleotide length ([d(AT)n]2, n=4,5), the CD spectrum appeared to be the sum of the stacked and groove binding TMPyP at all mixing ratios. Therefore, it is conclusive that the full dispersion of TMPyP requires at least one helical turn of the AT sequence at a mixing ratio below 1.0. Further increase of the mixing ratio resulted in the stacking of TMPyP even at the long oligonucleotides.  相似文献   

14.
Echinomycin binding to alternating AT.   总被引:1,自引:1,他引:0       下载免费PDF全文
K R Fox  J N Marks    K Waterloh 《Nucleic acids research》1991,19(24):6725-6730
We have studied the binding of echinomycin to DNA fragments containing GC-rich regions flanked by blocks of alternating AT by DNase I footprinting and diethylpyrocarbonate modification. Regions of alternating AT flanking the sequences CCCG, CCGC, CGGC and GG show a four base pair DNase I cleavage pattern and reaction of alternate adenines with diethylpyrocarbonate. This pattern is strongest when the AT-block is immediately adjacent to the CpG ligand binding site. We explain these phenomena by suggesting that echinomycin binds to the dinucleotide step ApT in a cooperative fashion. The cooperative effects can be transmitted through the dinucleotide step GC but not CC or AA. No such repetitive patterns are seen with surrounding regions of (ATT).(AAT). Evidence is presented for secondary drug binding sites at CpC and TpG with weaker interaction at the CpG site within the hexanucleotide TTCGAA.  相似文献   

15.
The antibiotic AT2433-B1 belongs to a therapeutically important class of antitumor agents. This natural product contains an indolocarbazole aglycone connected to a unique disaccharide consisting of a methoxyglucose and an amino sugar subunit, 2,4-dideoxy-4-methylamino-L-xylose. The configuration of the amino sugar distinguishes AT2433-B1 from its diastereoisomer iso-AT2433-B1. Here we have investigated the interaction of these two disaccharide indolocarbazole derivatives with different DNA sequences by means of DNase I footprinting and surface plasmon resonance (SPR). Accurate binding measurements performed at 4 and 25 degrees C using the BIAcore SPR method revealed that AT2433-B1 binds considerably more tightly to a hairpin oligomer containing a [CG](4) block than to an oligomer with a central [AT](4) tract. The kinetic analysis shows that the antibiotic dissociates much more slowly from the GC sequence compared to the AT one. Preferential binding of AT2433-B1 to GC-rich sequences in DNA was independently confirmed by DNase I footprinting experiments performed with a 117 bp DNA restriction fragment. The specific binding sequence 5'-AACGCCAG identified from the footprints was then converted into a biotin-labeled DNA hairpin duplex and compound interactions with this specific sequence were characterized by high resolution BIAcore SPR experiments. Such a combined approach provided a detailed understanding of the molecular basis of DNA recognition. The discovery that the glycosyl antibiotic AT2433-B1 preferentially recognizes defined sequences offers novel opportunities for the future design of sequence-specific DNA-reading small molecules.  相似文献   

16.
Iodinated angiotensin II (Ang II) and its analogues are often assumed to have equal affinities for AT(1) and AT(2) receptor subtypes. However, using saturation and competition binding assays in several tissues from pregnant, nonpregnant, and fetal sheep, we found the affinity of 125I[Sar(1)Ile(8)] Ang II for Ang II receptors was different (P<0.05) between tissue types. The dissociation constants (Kd) and half maximal displacements of [Sar(1)Ile(8)] Ang II (Sar IC(50)) were directly related (P<0.05) to proportions of AT(1) receptors, and inversely related (P<0.05) to proportions of AT(2) receptors in tissues from all groups combined, in tissues from individual groups (pregnant, nonpregnant or fetal), and in some individual tissues (uterine arteries and aortae). This suggests that 125I[Sar(1)Ile(8)] Ang II has a different affinity for AT(1) and AT(2) receptors in ovine tissues. The Kds of 125I[Sar(1)Ile(8)] Ang II for "pure" populations of AT(1) and AT(2) receptors were 1.2 and 0.3 nM, respectively, i.e. affinity was four-fold higher for AT(2) receptors. We corrected the measured proportions of the receptor subtypes using their fractional occupancies. In tissues which contained at least 10% of each receptor subtype, the corrected proportions were significantly altered (P<0.05), even in some tissues, to the extent of being reversed.  相似文献   

17.
Incorporation of modified nucleotides into DNA, using the PCR, has allowed us to probe the influence that the exocyclic 5-methyl group of pyrimidines has on DNAse I cleavage and sequence recognition by drugs. The results show that removal of the methyl group from the major groove, made possible by substituting uridine for thymidine, allows DNAse I to cleave more readily at AT-rich regions compared to normal DNA. By contrast, addition of an extra methyl group, contrived by substituting 5-methylcytidine for normal cytidine, allows DNAse I to cleave more readily at GC-rich regions compared to normal DNA. In the cutting pattern of DNA containing both uridine and 5-methyl cytosine, we find the cleavage characteristics of both the single-substituted DNA species combined. Thus, the presence or absence of the exocyclic 5-methyl group in the major groove has a strong influence on the relative intensity of cleavage of phosphodiester bonds by DNAse I. These nucleotide substitutions can also influence the sequence-selective binding of drugs to DNA. Whereas removal of the methyl group (replacement of T with U) generally has little effect on sequence recognition by a variety of drugs, addition of a methyl group (replacement of C with M) generates new binding sites for some intercalators, namely daunomycin, DACA and SN16713.  相似文献   

18.
Angiotensin IV (Ang IV) exerts profound effects on memory and learning, a phenomenon ascribed to its binding to a specific AT4 receptor. However the AT4 receptor has recently been identified as the insulin-regulated aminopeptidase (IRAP). In this study, we demonstrate that AT4 receptor ligands, including Ang IV, Nle1-Ang IV, divalinal-Ang IV, and the structurally unrelated LVV-hemorphin-7, are all potent inhibitors of IRAP catalytic activity, as assessed by cleavage of leu-beta-naphthylamide by recombinant human IRAP. Both Ang IV and divalinal-Ang IV display competitive kinetics, indicating that AT4 ligands mediate their effects by binding to the catalytic site of IRAP. The AT4 ligands also displaced [125I]-Nle1-Ang IV or [125I]-divalinal1-Ang IV from IRAP-HEK293T membranes with high affinity, which was up to 200-fold greater than in the catalytic assay; this difference was not consistent among the peptides, and could not be ascribed to ligand degradation. Although some AT4 ligands were subject to minor cleavage by HEK293T membranes, none were substrates for IRAP. Of a range of peptides tested, only vasopressin, oxytocin, and met-enkephalin were rapidly cleaved by IRAP. We propose that the physiological effects of AT4 ligands result, in part, from inhibition of IRAP cleavage of neuropeptides involved in memory processing.  相似文献   

19.
20.
A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA   总被引:7,自引:0,他引:7  
We have constructed plasmids carrying d(AT)n.d(AT)n inserts of different lengths. Two-dimensional gel electrophoresis patterns show that an increase in the negative superhelicity of these DNAs brings about a structural transition within the inserts, resulting in a reduction of the superhelical stress. However, this reduction corresponds to the expected values neither for cruciform nor the Z form. Those DNA topoisomers in which the structural transition had occurred proved to be specifically recognizable by single-strand-specific endonuclease S1, with the cleavage site situated at the centre of the insert. These data, as well as kinetic studies, suggest that the cloned d(AT)n.d(AT)n sequences adopt a cruciform rather than the Z-form structure. We discuss plausible reasons of the discrepancy between the observed superhelical stress release and that expected for the transition of the insert to the cruciform state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号