首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of RNA synthesis in synchronously growing HeLa S3 cells was determined as a function of position in the cell generation cycle. Measurements throughout the cycle of both the rate of incorporation of radioactively-labeled uridine and of the total amount of RNA indicate that (1) the rate of RNA synthesis is constant (or increases only slightly) during G1, approximately doubles during the first half of S, and then remains constant during the remainder of S and G2, and (2) cells attain the average G1 rate of RNA synthesis very early in G1, and maintain the average G2 rate until mitosis. If the initiation of DNA synthesis is blocked, the acceleration of RNA synthesis is markedly reduced or eliminated. Further experiments in which DNA synthesis was inhibited at different times in S, or to varying degrees from the beginning of S, suggest that the extent to which RNA synthesis is accelerated depends on the amount of DNA duplicated. These data also indicate that duplication of the first half, and in particular the first few per cent, of the DNA complement results in a disproportionate acceleration of RNA synthesis. The possibility that fluctuations in the sizes of precursor pools may lead to misinterpretation of labeled-uridine incorporation data was examined. Experiments indicate that in this system pool fluctuations do not cause invalid measures of RNA synthesis. It is concluded that RNA synthesis occurs throughout interphase, but undergoes a two-fold increase in rate which is dependent on the duplication of DNA.  相似文献   

2.
Human cytomegalovirus stimulates host cell RNA synthesis.   总被引:14,自引:14,他引:0       下载免费PDF全文
Human cytomegalovirus infection of human fibroblast cells (WI-38) induced cellular RNA synthesis. The RNA synthesis in infected cultures preceded the synthesis of viral DNA and progeny virus by approximately 24 h. RNA species synthesized in infected cells included ribosomal 28S and 18S; and 4S transfer RNA; all were markedly increased in comparison to uninfected cells. This induction of host cell RNA synthesis was dependent upon a protein(s) that was synthesized during the early stages of infection.  相似文献   

3.
4.
The synthesis of mitochondrial messenger RNA during early sea urchin development was examined. Oligo(dT) chromatography and electrophoresis on aqueous or formamide gels of mitochondrial RNA from pulse-labeled embryos showed the presence of eight distinct poly(A)-containing RNA species, ranging in size from 9 to 22 S. Nuclease digestion of these RNAs revealed poly(A) sequences of 4 S size. Using sea urchin anucleate fragments, we were able to demonstrate that all eight messenger RNAs are transcribed from mitochondrial DNA, rather than being transcribed from nuclear DNA and imported into the mitochondria.There was no change in the electrophoretic profile of the eight poly(A) RNAs when embryos were pulsed with [3H]uridine at various times after fertilization. Neither was there any change in the incorporation of [3H]uridine into these species or in the percentage of total newly synthesized mitochondrial RNA that contains poly(A) sequences as development progresses. Even though these RNAs appear to be transcribed at a constant rate throughout early development, they were not detected in mitochondrial polysomes until 18 hr after fertilization.  相似文献   

5.
Third-instar larvae of the blowfly Calliphora erythrocephala were injected with [2-3H]adenosine, and its flow into the salivary gland ATP pool and each of several electrophoretically resolved salivary gland RNA species were quantitated. From these data, the individual in vivo rates of synthesis, accumulation, and processing of salivary gland ribosomal RNA (rRNA), 4 S RNA, and 5 S RNA have been measured at several different developmental stages. These results indicate that the synthesis of 5 S RNA and rRNA are coordinate, developmentally regulated, and independent of the synthesis of 4 S RNA. A nonribosomal, heterodisperse RNA component (hdRNA) was also identified. This species contributes to both the rapidly turning over pulse-labeled RNA and the accumulating pulse-labeled RNA populations. Indirect measurements suggest that the developmental pattern of regulation of this RNA species is also independent of 5 S RNA and rRNA synthesis. The rate of synthesis and accumulation of each of these RNA species either remained constant or declined during the first three-fourths of the instar, despite a six- to sevenfold increase in the content of cellular DNA.  相似文献   

6.
7.
8.
9.
Summary A study has been made of the effects of a casamino acids shift-up on a prototrophic strain of yeast growing under conditions of ammonium repression. The shift-up produced an increase in growth rate some 120 min after the addition of amino acids to the medium. This growth rate increase was slightly preceded by an increase in the rate of accumulation of DNA. In contrast, the rate of accumulation of protein increased immediately and that of RNA 15–20 min after the shift. RNA was initially accumulated at a rate greater than that required to sustain the new steady state. This was shown to be due to an increase in the rate of synthesis of the rRNA species derived from the 35S precursor. The rate of synthesis of 5S rRNA and of tRNA increased much later and to a lesser extent than that of the 35S derived species. The implications of these results for general theories of the regulation of RNA synthesis are discussed.Paper I in this series is Oliver and McLaughlin (1977)  相似文献   

10.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

11.
12.
Using the harvesting method of synchronizing L cells, the relationship of RNA synthesis of DNA replication was studied by the use of selective inhibitors of RNA synthesis such as actinomycin D and chromomycin succinate. The synthesis of the early replicating DNA fraction is a process sensitive to the inhibition of RNA synthesis during the G1 period. The synthesis of early replicating DNA was inhibited by chromomycin succinate without affecting the initation of DNA synthesis. However, actinomycin D inhibited the synthesis of early replicating DNA and prevented the initiation of DNA synthesis in 50% of the synchronized cells. However, it was found that the continued synthesis of RNA during the S period is not essential for the synthesis of late replicating DNA. In addition to this specific response of DNA synthesis to the inhibitors of RNA synthesis, another function of early and late replicating DNA was determined relative to the cell viability. Cells synthesizing early replicating DNA were killed more efficiently by chromomycin than at other stages of the cell cycle. This indicates that the early replicating DNA unit plays a more important role in cell reproduction than the late replicating DNA unit.  相似文献   

13.
We have examined the synthesis of messenger-like RNA in unfertilized sea urchin eggs. Most of the RNA synthesized is restricted to the nucleus and sediments from 16 to 30S. A small fraction can be isolated from the postmitochondrial supernatant and displays a sedimentation profile typical of embryonic mRNA with peaks at 9 and 18S. This cytoplasmic RNA is largely present as free RNPs and we estimate that less than 20% of the RNA is in polysomes. The RNA made in the egg is unstable and reaches a steady state with a half-time of about 30 min. We have examined the accumulation of RNA in the egg and have calculated a rate of synthesis of 1.4 × 10?14 g of RNA/min/egg which is similar, on a per-nucleus basis, to that found in the just-fertilized egg and very early embryo. It is approximately 10 times greater than the rate of RNA synthesis in the blastula nucleus. We estimate that the RNA synthesized by the unfertilized egg amounts to a maximum of 3 × 10?13 g of potential mRNA at the time of fertilization, or 10–15% of its immediate needs. This RNA cannot account for the increase in protein synthesis that occurs after fertilization, which must be the result of the translation of another population of more stable egg or oogenic mRNA that is kinetically distinct from the RNA we have measured. The steady-state level of labeled RNA present in the egg does not change upon fertilization until after the first cleavage, at about 2.5 hr after fertilization. Thus the RNA synthesis that occurs in the just-fertilized zygote appears to be merely a continuation (at least quantitatively) of the RNA synthesis taking place in the egg.  相似文献   

14.
RNA synthesis during germination was investigated by labelingpea embryo axes or seedling roots with radioactive uridine oradenosine. The results indicated that all RNA species of pre-rRNAs(ribosomal precursor RNAs), rRNAs, heterodisperse-type RNA and4–5S low molecular weight RNA were synthesized from the6th to 64th hour of the period examined. At the very early stageof germination, some conspicuous labeling of the heterodisperse-typeRNA was observed after pulse-labeling. There was no great differencein the labeling patterns of various RNA species with regardto other later stages. When embryo axes were labeled for 1 hrwith 3H-adenosine from the 16th hour, about 25% of the labeledwhole cell RNA was retained on the membrane filter. The ratioof labeled poly(A)-containing RNA, however, decreased as germinationproceeded. The poly (A)-containing RNA sedimented heterodisperselywith a mean value of about 20S in a sucrose density gradient;this size-distribution did not vary throughout germination. (Received January 16, 1979; )  相似文献   

15.
The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times after infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [3H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minus-strand RNA synthesis was three- to fourfold more sensitive to inhibition by cycloheximide than was plus-strand synthesis.  相似文献   

16.
Noncoordinate control of RNA synthesis in eucaryotic cells   总被引:3,自引:0,他引:3  
M V Willis  J B Baseman  H Amos 《Cell》1974,3(2):179-184
Inhibition of protein synthesis in confluent monolayers of chick fibroblasts stimulates selectively the synthesis of 4S RNA, resulting in a net accumulation of 4S RNA in the inhibited cells. Under these conditions, inhibition of ribosomal RNA synthesis and processing occurs, as does a decrease in soluble uridine phosphate concentrations; increased pools of certain amino acids are also apparent. Recovery of cells from inhibition is accompanied by a rapidly increasing rate of protein synthesis that lasts for several hours. The small molecular weight RNA synthesized during inhibition of protein synthesis appears properly methylated, and in the presence of cycloheximide and actinomycin D shows a precursor-product conversion. Radiolabeled RNA synthesized during inhibition of protein synthesis is stable following the recovery of cells from inhibition. Stimulation of uridine incorporation into 4S RNA during arrest of protein synthesis is also demonstrated in high-density cultures of L- and Hep-2 cells, suggesting that this non-coordinate stimulation of 4S RNA may be a general property of eucaryotic cells.  相似文献   

17.
The incorporation of tritiated nucleosides into DNA and RNA has been examined in partially synchronized cells of Rana pipiens embryos at the neurula and tailbud stages. Tritiated thymidine and deoxyguanosine are incorporated into the DNA in two maxima, or waves, during the S phase at both stages. More DNA replicates in the early maximum at the neurula stage than at the tailbud stage. A comparison of the degree of incorporation of labelled deoxyguanosine to labelled thymidine into DNA suggests that earlier replicating DNA at both stages may be GC-rich compared to later replicating DNA. The incorporation of tritiated uridine into RNA during the S phase also differs between the neurula and tailbud stages. Pulse and continuous label experiments indicate that at the neurula stage the highest rate of RNA synthesis occurs late in the S phase whereas at the tailbud stage the higher rate of RNA synthesis has shifted to an interval earlier in the S phase.  相似文献   

18.
19.
Premeiotic and postmeiotic (haploid) gene expression during spermatogenesis in the anuran, Xenopus laevis, was studied by analyzing the accumulation of radioactively labelled cytoplasmic polyadenylated [poly (A +)] and non-polyadenylated [poly (A -)] RNAs. Dissociated spermatogenic cells were labelled and maintained in an in vitro system capable of supporting cell differentiation. Labelled cells were separated by density gradient centrifugation into subpopulations enriched for individual spermatogenic stages. RNA was extracted and purified from each cell fraction, and separated into poly (A +) and poly (A -) species. Comparison of poly (A +) to non-poly (A) radioactivity in cells labelled with tritiated uridine or adenosine demonstrated that (1) all cell fractions produced significant quantities of polyadenylated RNA relative to total RNA synthesis; and (2) that a cell fraction enriched for pachytene spermatocyte RNA contained up to 15% of total cytoplasmic and 35% of total polysomal RNA labelled as poly (A +) containing species. RNA was also characterized by sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. All cell types showed typical poly (A -) peaks of 4S, 18S and 28S, corresponding to tRNA (4S) and rRNAs (18, 28S) respectively. Spermatids and spermatozoa had additional absorbance peaks at 13 and 21S which cosedimented with Xenopus oocyte mitochondrial rRNA. Patterns of incorporation of uridine and adenosine into poly (A +) RNA in all germ cell fractions tested were complex. In all cases, major areas of radioactivity were found in a broad band sedimenting between 6-17S. Spermatid fractions showed a prominent peak of incorporation at 6-8S, while pachytene cells also showed heavier poly (A +) peaks in the 17-25S region. A non-polyadenylated RNA species sedimenting at 6-8S with a relatively rapid rate of turnover was also observed in spermatids. From these results it is concluded that synthesis of transfer, ribosomal, and putative messenger RNA species continues in spermatogenic cells throughout all but the very last stages of spermatogenesis in Xenopus.  相似文献   

20.
A specific inhibitor of ribosomal RNA (rRNA) synthesis was partially purified from an acid-soluble fraction of Xenopus laevis blastulae. Effects of this inhibitor on 5S rRNA synthesis of isolated neurula cells of the same species were investigated. The results show that the synthesis of both 5S rRNA and 4S RNA proceeds normally when both 18 and 28S rRNA are almost completely inhibited. Failure of the inhibitor to suppress 5S rRNA synthesis suggests that it plays an important role in the regulation of 18 and 28S rRNA synthesis during development and that the synthesis of 5S rRNA is not coordinated to that of 18 and 28S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号