首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Indicators》2007,7(3):610-635
Developing effective indicators of ecological condition requires calibration to determine the geographic range and ecosystem type appropriate for each indicator. Here, we demonstrate an approach for evaluating the relative influence of geography, geomorphology and human disturbance on patterns of variation in biotic indicators derived from multiple assemblages for ecosystems that span broad spatial scales. To accomplish this, we collected abundance information on six biotic assemblages (birds, fish, amphibians, aquatic macroinvertebrates, wetland vegetation, and diatoms) from over 450 locations along U.S. shorelines throughout each of the Great Lakes during 2002–2004. Sixty-six candidate taxon- and function-based indicators analyzed using hierarchical variance partitioning revealed that geographic (lake) rather than geomorphic factors (wetland type) had the greatest influence on the proportion of variance explained across all indicators, and that a significant portion of the variance was also related to response to human disturbance. Wetland vegetation, fish and bird indicators were the most, and macroinvertebrates the least, responsive to human disturbance. Proportion of rock bass, Carex lasiocarpa, and stephanodiscoid diatoms, as well as the presence of spring peepers and the number of insectivorous birds were among the indicators that responded most strongly to a human disturbance index, suggesting they have good potential as indicators of Great Lakes coastal wetland condition. Ecoprovince, wetland type, and indicator type (taxa vs function based) explained relatively little variance. Variance patterns for macroinvertebrates and birds were least concordant with those of other assemblages, while diatoms and amphibians, and fish and wetland vegetation were the most concordant assemblage pairs. Our results strongly suggest it will not be possible to develop effective indicators of Great Lakes coastal wetland condition without accounting for differences among lakes and their important interactions. This is one of the first attempts to show how ecological indicators of human disturbance vary over a broad spatial scale in wetlands.  相似文献   

2.
The effect of artificial habitat in altered landscapes on species interactions and their suite of enemies is largely unknown. Water mites have been associated with reduced fitness of model damselflies. Mite parasitism was variable, but higher for Ischnura verticalis damselflies from natural, than from artificial, wetlands in the same region. There were no differences in timing of sampling, temperature during sampling, or host age or sex composition of samples between wetland types. Landscape structure might constrain mite presence or abundance at wetland sites or wetland type might be a better predictor of mites, based on factors such as prey abundance. Fewer mites on damselflies from numerous artificial wetlands means that the strength of parasite-mediated selection is likely less than would be inferred if only natural wetlands were surveyed. Such effects of human changes in habitats on host species probably occur often.  相似文献   

3.
Biodiversity of constructed wetlands for wastewater treatment   总被引:3,自引:0,他引:3  
Constructed wetlands are often built for wastewater treatment to mitigate the adverse effects of organic pollution in streams and rivers caused by inputs of municipal wastewater. However, there has been little analysis of biodiversity and related factors influencing the ecosystem functioning of constructed wetlands. The purpose of this study was to evaluate the biodiversity of two free-water-surface integrated constructed wetlands in subtropical Taiwan by analyzing the water quality, habitat characteristics, and biotic communities of algae, macrophytes, birds, fish, and aquatic macroinvertebrates in the treatment cells. Our results indicated that the two integrated constructed wetlands (Hsin-Hai II and Daniaopi Constructed Wetlands) achieved good performance in reducing the concentrations of total nitrogen (TN) and total phosphorus (TP), and loadings of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) from municipal sewage. In total, 58 bird species, 7 fish species, and 34 aquatic macroinvertebrate taxa were recorded in the two wetlands. The results of stepwise multiple regressions showed that the richness, abundance, and diversity of birds increased with wetland area. Fish richness and abundance respectively increased with wetland area and dissolved oxygen, while the diversity decreased with increases in TP concentrations. The richness and density of aquatic macroinvertebrates increased with the cover of aquatic macrophytes, while the diversity increased with wetland area. Ordination analyses indicated that variations in the community structures of birds, fishes, and aquatic macroinvertebrates were respectively best explained by water temperature, wetland area, and species richness of fish. Our results suggest that wetland area, cover of aquatic macrophytes, and water quality were the most important factors governing the diversity in the constructed wetlands, and that the factors influencing community structures varied among different taxonomic groups. In addition to improving water quality, this study implied that the biodiversity of constructed wetlands for wastewater treatment can be enhanced through proper design and management.  相似文献   

4.
Using human activity and stream biota data collected from 160 small (600–3000 ha) watersheds in rural southwestern Ontario, we determined the relative ability of three commonly used methods of describing fish and benthic macroinvertebrate assemblages (i.e., metrics, presence/absence, and relative abundance) to assess the biological effects of reach and basin scale human activity. Analyses indicated that benthic macroinvertebrate presence/absence was more strongly correlated with human activity at both reach and basin scales than fish presence/absence, benthic macroinvertebrate or fish relative abundance, and metrics derived from benthic macroinvertebrates or fish data. However, sites exhibiting lower levels of human activity were, in some cases, better differentiated by relative abundance. The use of metrics did not provide any additional information regarding the effects of human activities and regularly appeared to underestimate differences between moderately exposed sites and sites exposed to low or very high levels of human activity. Tests for redundancy between fish and benthic macroinvertebrates indicated that they respond differently to the same type and extent of human activity suggesting that the assemblages are sensitive to different stressors emanating from the same activities. There was also a disparity between assemblages with regards to which scale they were most strongly associated as fish were more associated with human activities at the basin scale whereas benthic invertebrates were most strongly associated with the activities at the reach scale. Finally, there was no apparent advantage to describing human activities at multiple scales as predicted basin scores were highly correlated among scales, a finding that may be attributable to the homogeneity of rural environments. Similar studies need to be conducted for a broader spectrum of human activities across a larger geographic extent to determine if these findings are widely applicable.  相似文献   

5.
Avian cholera, caused by Pasteurella multocida, affects waterbirds across North America and occurs worldwide among various avian species. Once an epizootic begins, contamination of the wetland environment likely facilitates the transmission of P. multocida to susceptible birds. To evaluate the ability of P. multocida serotype-1, the most common serotype associated with avian cholera in waterfowl in western and central North America, to persist in wetlands and to identify environmental factors associated with its persistence, we collected water and sediment samples from 23 wetlands during winters and springs of 1996-99. These samples were collected during avian cholera outbreaks and for up to 13 wk following initial sampling. We recovered P. multocida from six wetlands that were sampled following the initial outbreaks, but no P. multocida was isolated later than 7 wk after the initial outbreak sampling. We found no significant relationship between the probability of recovery of P. multocida during resampling and the abundance of the bacterium recovered during initial sampling, the substrate from which isolates were collected, isolate virulence, or water quality conditions previously suggested to be related to the abundance or survival of P. multocida. Our results indicate that wetlands are unlikely to serve as a long-term reservoir for P. multocida because the bacterium does not persist in wetlands for long time periods following avian cholera outbreaks.  相似文献   

6.
Variation in the distribution and abundance of species across landscapes has traditionally been attributed to processes operating at fine spatial scales (i.e., environmental conditions at the scale of the sampling unit), but processes that operate across larger spatial scales such as seasonal migration or dispersal are also important. To determine the relative importance of these processes, we evaluated hypothesized relationships between the probability of occupancy in wetlands by two amphibians [wood frogs (Lithobates sylvaticus) and boreal chorus frogs (Pseudacris maculata)] and attributes of the landscape measured at three spatial scales in Rocky Mountain National Park, Colorado. We used cost-based buffers and least-cost distances to derive estimates of landscape attributes that may affect occupancy patterns from the broader spatial scales. The most highly ranked models provide strong support for a positive relationship between occupancy by breeding wood frogs and the amount of streamside habitat adjacent to a wetland. The model selection results for boreal chorus frogs are highly uncertain, though several of the most highly ranked models indicate a positive association between occupancy and the number of neighboring, occupied wetlands. We found little evidence that occupancy of either species was correlated with local-scale attributes measured at the scale of individual wetlands, suggesting that processes operating at broader scales may be more important in influencing occupancy patterns in amphibian populations.  相似文献   

7.
With the loss of natural wetlands, artificial wetlands are becoming increasingly important as habitat for waterbirds. We investigated the relationships between waterbirds and various biophysical parameters on artificial wetlands in an Australian urban valley. The densities (birds per hectare) of several species were correlated (mostly positively) with wetland area, and correlations were observed between certain species and other physical and water chemistry variables. Waterbird community structure, based on both abundance (birds per wetland) and density data, was most consistently positively correlated with the relative amount of wetland perimeter that was vegetated, surface area, distance to nearest wetland, public accessibility and shoreline irregularity. We also compared the relative use of the two types of urban wetlands, namely urban lakes and stormwater treatment wetlands, and found for both abundance and density that the number of individuals and species did not vary significantly between wetland types but that significant differences were observed for particular species and feeding guilds, with no species or guild being more abundant or found in greater density on an urban lake than a stormwater treatment wetland. Designing wetlands to provide a diversity of habitat will benefit most species.  相似文献   

8.
Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of two different types of wetlands adjacent to agricultural fields. Each WRSIS consists of one treatment wetland designed to process agricultural contaminants (WRSIS wetlands) and one storage wetland for holding subirrigation water (WRSIS reservoirs). Previous WRSIS related research has focused on the filtration ability and development of aquatic plants within WRSIS wetlands. The fauna of the WRSIS reservoirs and how its aquatic community structure compares with WRSIS wetlands is unknown. We compared fish, amphibian, and reptile community structure between WRSIS wetlands and reservoirs in northwestern Ohio. Fishes, amphibians, and reptiles were sampled by seining, hoop netting, and gee minnow trapping in three WRSIS wetlands and three WRSIS reservoirs in June of 2006, 2007, and 2008. No difference in species richness, abundance, percent fish, percent reptiles, fish abundance, or reptile abundance occurred between the smaller shallower WRSIS wetlands and the deeper larger WRSIS reservoirs. Percent amphibians and amphibian abundance was greater in WRSIS wetlands than reservoirs. Jaccard’s index scores ranged from 0 to 0.5 and indicated species composition differed between WRSIS wetlands and reservoirs. Our results assisted with the development of design and management criteria incorporating wetland size, hydrology, and upland habitat intended to enable WRSIS wetlands to function primarily as amphibian habitat and the reservoirs to function as fish habitat.  相似文献   

9.
Livestock grazing is a prevalent land use in western North American intermountain wetlands, and physical and biotic changes related to grazing-related disturbance can potentially limit wetland habitat value for waterfowl. We evaluated breeding waterfowl use in 34 wetlands in relation to water retention, amount of wetlands on the landscape, and livestock grazing intensity. The study was conducted over 2 years in the southern intermountain region of British Columbia, Canada. For a subset of 17 wetlands, we measured aquatic invertebrate abundance over 1 year. Waterfowl breeding pairs and broods were classified into three functional groups: dabbling ducks, and two types of diving ducks, overwater and cavity nesters. We evaluated candidate models with variables considered singly and in combination using the Akaike Information Criterion. When selected, bare ground (an indicator of grazing intensity) and wetland density were negatively associated with breeding use while wetland fullness and invertebrate density were positively associated. Each factor was a significant predictor in at least one of the models, but unexpectedly, grazing intensity was the most consistent predictor of waterfowl wetland use (e.g., it was present in more ‘best models’ than wetland fullness). Grazing was associated with declines in the number of waterfowl pairs and broods, likely mediated through effects on wetland vegetation and aquatic macroinvertebrates. Models with site- and landscape-scale variables generally performed better than simpler models. Waterfowl breeding use of wetlands can be improved by reduced livestock grazing intensity adjacent to wetlands and by grazing later in the season. Wetland water retention is also an important constraint on waterfowl use of wetlands and may become more limiting with a shifting climate.  相似文献   

10.
Anthropogenic alterations of natural hydrology are common in wetlands and often increase water permanence, converting ephemeral habitats into permanent ones. Since aquatic organisms segregate strongly along hydroperiod gradients, added water permanence caused by canals can dramatically change the structure of aquatic communities. We examined the impact of canals on the abundance and structure of wetland communities in South Florida, USA. We sampled fishes and macroinvertebrates from marsh transects originating at canals in the central and southern Everglades. Density of all aquatic organisms sampled increased in the immediate proximity of canals, but was accompanied by few compositional changes based on analysis of relative abundance. Large fish ( >8 cm), small fish ( <8 cm) and macroinvertebrates ( >5 mm) increased in density within 5 m of canals. This pattern was most pronounced in the dry season, suggesting that canals may serve as dry-down refugia. Increases in aquatic animal density closely matched gradients of phosphorus enrichment that decreased with distance from canals. Thus, the most apparent impact of canals on adjacent marsh communities was as conduits for nutrients that stimulated local productivity; any impact of their role as sources of increased sources of predators was not apparent. The effect of predation close to canals was overcompensated by increased secondary productivity and/or immigration toward areas adjacent to canals in the dry season. Alternatively, the consumptive effect of predatory fishes using canals as dry-season refuges is very small or spread over the expanse of marshes with open access to canals. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
Physicochemical attributes were measured and aquatic macroinvertebrates were collected from six wetlands near Perth, Western Australia at three weekly intervals over a 13 month period from August 1988 to September 1989. The six wetlands encompassed a range of depths, pH, concuctivities, nutrient concentrations and colours. Temporal changes in the macroinvertebrate communities appeared to be related to seasonal changes in the physical and chemical characteristics of the wetlands. Community composition differed more between the less enriched wetlands then the higly enriched wetlands where communities were generally similar. High species richness was associated with seasonal drying. High macro invertebrate abundance appeared to be associated with the presence of either green algal or cyanobacterial blooms in the enriched wetlands. The highest macroinvertebrate biomass was recorded in wetlands with both cyanobacterial blooms and abundant macrophytes present.  相似文献   

12.
Zooplankton are a functionally important but poorly studied component of western boreal forest (WBF) wetland ecosystems. To characterize patterns in zooplankton abundance and composition an exploratory study of 24 shallow-water wetlands in northern Alberta, Canada was carried out over the summers of 2001 and 2002. Results suggest zooplankton communities in WBF wetlands tend to exist as: (1) small-cladoceran dominated communities, (2) larger sized cladoceran (e.g. Daphnia) dominated communities, or (3) communities composed primarily of rotifers and/or other crustacean zooplankton. The presence/absence of brook stickleback (Culea inconstans) was the factor most strongly linked to zooplankton structure with small cladocerans tending to dominate in wetlands with stickleback. In fishless wetlands, communities dominated by medium-large sized cladocerans tended to correspond with low-chlorophyll/high-submerged aquatic vegetation (SAV) conditions. Conversely, communities composed of rotifers and other crustaceans were associated with high-chlorophyll/low-SAV states. Macro-invertebrate predator abundance was not strongly linked to patterns in zooplankton composition suggesting macro-invertebrate predation is not a significant factor influencing zooplankton structure in fishless wetlands. Results suggest activities that spread stickleback (e.g. ditching) or inhibit development of macrophyte-dominated/clear-water conditions (e.g. nutrient loading) may seriously alter the zooplankton community structure, and thereby the functional ecology, of these valuable wetland ecosystems.  相似文献   

13.
We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.  相似文献   

14.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

15.
SUMMARY. 1. Predation upon macroinvertebrates by the loach Oreonectes platycephalus Günther (Cobitidae) was studied using predator inclusion/exclusion cages in a series of pools along a Hong Kong stream. Treatments employed were predator exclusion, medium (approximately natural) predator densities (1 fish cage−1) and high predator densities (2 fish cage−1). Macroinvertebrate abundance in cages was monitored after 2 and 4-weeks exposure to predators.
2. The presence of fish was associated with significant declines in the total numbers of macroinvertebrates colonizing cages. However, taxa were influenced differently, with mayflies decreasing by a factor of two while the more mobile shrimps (Atyidae) were unaffected. Chironomid abundance (largely Chironominae) was unaffected by predator density and increased in week 4. Detritus acted as a confounding variable at this time because chironomid abundance was significantly correlated with the weight of accumulated detritus in cages.
3. While invertebrates were more abundant in cages lacking fish, there were no fewer invertebrates in cages with 2 fish than with 1 fish. This may indicate the presence of secure refuges among substrates in the cages, preventing the additional fish from depleting prey further, or a lack of precision of methods due to natural variations in prey densities and spatial patchiness.
4. No significant effects of predators on relative prey abundance or species richness were detected.
5. The impact of predation on prey abundance weakened on week 4, perhaps due to extra refuges among the accumulated detritus. However, drying of the stream increased fish densities in pools so that cages may have become zones of relative safety that were colonized readily by macroinvertebrates. This result highlights the need for year-round investigations to quantify predation effects in Hong Kong's seasonal tropical climate.  相似文献   

16.
17.
Assemblages exhibit nested distributional patterns if the species found in species-poor locations also occur in progressively richer locations. We investigated patterns of nestedness in assemblages of larval amphibians and predatory macroinvertebrates in 42 isolated freshwater wetlands in southern New Hampshire, USA. These wetlands varied markedly in hydroperiod and we predicted that nestedness would be relatively weak because changes in disturbance processes (the relative threat of desiccation and predation) along the hydroperiod gradient often generate distinct assemblages. Contrary to expectations we found that both amphibian and macroinvertebrate assemblages were strongly nested not only with respect to species richness but also with respect to hydroperiod and wetland size, which were positively correlated. We attribute our results to the increased colonization rates and decreased extinction rates associated with increasing hydroperiod, and to concomitant increases in wetland size, habitat heterogeneity/complexity, and possibly water temperature. Moreover, the impact of predatory fishes on species richness and composition of amphibians and macroinvertebrates was relatively minor. We found that amphibians had a significantly lower degree of nestedness than macroinvertebrates, suggesting that a higher proportion of amphibian species found in species-poor assemblages was unlikely to occur in species-rich assemblages of amphibians (e.g. wood frogs and spotted salamanders). The degree of nestedness appeared to be influenced primarily by hydroperiod and wetland size for amphibians, whereas nestedness of macroinvertebrates was influenced by unknown factors (possibly water temperature) in addition to hydroperiod and wetland size. The high degrees of nestedness observed in amphibian and macroinvertebrate assemblages imply that protection of larger, more permanent wetlands may be more important for conserving native biological diversity than protection of smaller, non-permanent wetlands. However, non-permanent wetlands are used by several species of conservation concern that often do not occur in larger and more permanent wetlands.  相似文献   

18.
19.
20.
Wetland restoration practices can include rehabilitating degraded wetlands or creating new wetlands. Empirical evidence is needed to determine if both rehabilitated and created wetlands can support the same macroinvertebrate communities as their natural counterparts. We measured long‐term macroinvertebrate community change in seasonal wetlands known as Delmarva Bays in Maryland, U.S.A. We compared a rehabilitated, a created, and a natural Delmarva Bay. We hypothesized that the created and rehabilitated wetlands would develop different macroinvertebrate communities. We also hypothesized that the community composition of the rehabilitated wetland would become more similar to that of the natural wetland than to that of the created wetland over 9 years encompassed by this study. We monitored the macroinvertebrates, including both predators and primary consumers, and environmental conditions in the three wetlands from March to August in 2005, 2006, 2007, and 2012. Cluster analysis indicated that from 2005 to 2007, the macroinvertebrate community of the rehabilitated wetland and the created wetland were more similar to each other than to the natural wetland. In 2012, the rehabilitated wetland was more similar to the natural wetland than to the created wetland. This similarity was driven principally by changes in the composition of primary consumer taxa. Our results suggest that rehabilitated Delmarva Bays are more likely to support a natural macroinvertebrate community than are created wetlands. Restoration practices that rehabilitate existing wetlands may be preferred over practices that create new wetlands when restoration project goals include developing natural macroinvertebrate communities in a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号