首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This investigation was designed to explore the potential of microbial antagonism in the control of some tomato diseases including bacterial, Fusarium and Verticillium wilts; early blight; bacterial canker. Three Streptomyces spp. were used: S. pulcher, S. canescens and S. citreofluorescens.The in vitro studies showed that an 80% concentration of the culture filtrate of either S. pulcher or S. canescens significantly inhibited spore germination, mycelial growth and spotulation of Fusarium oxysporum f.sp. lycopersici, Verticillium albo-atrum and Alternaria solani. The same concentration of filtrate of either S. pulcher or S. citreofluorescens was detrimental to the bacterial populations of Clavibacter michiganensis subsp. michiganensis and Pseudomonas solanacearum.The in vivo studies involved different treatments: soaking tomato seeds in filtrate of the antagonist prior to sowing, inoculation of the soil with the antagonist 7 days before sowing, and coating of tomato seeds with spores of the antagonist before sowing. The seed-coating treatment was the most effective in controlling all the pathogens at 42 and 63 days after sowing. Soil inoculation with the antagonist 7 days prior to sowing was less effective in controlling the tomato pathogens as compared to seed-coating. The seed-soaking treatment was the least effective in controlling the diseases concerned.The results also revealed that seed-coating with antagonistic Streptomyces spp. significantly improved tomato growth.  相似文献   

2.
The cell-free culture filtrate (CCF) was prepared from a culture of an Aspergillus flavus antagonist, Bacillus subtilis B-FS06. The CCF inhibited the growth and spore germination of A. flavus at a series of concentrations (10, 25, 50%) (v/v). It still retained the activity after treatment at pH values ranging from 2 to 12 for 24 h or at 100 °C for 30 min. The antifungal activity, however, was reduced by 30% after treatment at 121 °C for 20 min. After purification by anion exchange chromatography, gel filtration chromatography and HPLC, the active compounds revealed six ion peaks: [M–H] m/z = 1006.78, 1020.71, 1034.74, 1049.54, 1056.78, and 1071.64 by using electrospray ionization mass spectrometry (ESI-MS) analysis. In the presence of the active compounds at 200 μg/g, the growth of A. flavus on peanuts was completely inhibited. Ting Zhang and Zhi-Qi Shi contributed equally to this work.  相似文献   

3.
The aim of the research was to estimate the sensitivity of tomato tissue and spore from necrotrophic isolate of B. cinerea on H2O2. The influence of exogenic H2O2 and B. cinerea on plant tissue and on the activity of peroxidases (PO), catalase (CAT) and superoxide dismutase (SOD) in apoplastic tomato leaves fraction were investigated. It was proved that 40 mM H2O2 damaged the cells of a host, and inhibited in vitro germination of B.cinerea spores. Complete inhibition of germination was observed after the use 100 mM H2O2. In the presence of spores H2O2 was decomposed to H2O and O2. Trace activity of catalase was observed in a solution of spores used for inoculation. Necrosis which appeared on the leaves after 40 mM H2O2 treatment resembled hypersensitive response. On the leaves pretreated at this concentration the development of infection was observed. The H2O2 concentration harmful for the tissues, stimulated the PO activity measured with NADH — responsible for generation of ·O 2 , as well as with syringaldazine (S) and ferulic acid (FA), substrates characteristics of forms lignifying and strengthening the cell wall. Clear increase in CAT activity, resulting from infection and early pretreatment with H2O2 was observed in apoplast. No effect on SOD activity was observed. A hypothesis may be put forward, that germinating spores produce enzymes which allow them to decompose H2O2 generated in apoplast, so there is little likelihood that B. cinerea can be directly inhibited by reactive oxygen forms (ROS) during initial stages of infection. Necrotic lesions resembling HR generated by exogenous H2O2 as well as induction of activity of apoplastic plant enzymes, particularly PO connected with strengthening and lignification of cell wall, were not sufficient factors to inhibit fungal expansion.  相似文献   

4.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

5.
The total concentrations of free phenolic compounds and peroxidase were determined in spikes (collected at the flowering stage) of some spelt and common wheat cultivars differing in their response to F. culmorum infection. The antifungal activity of methanol extracts obtained from spikes was also evaluated. The tested genotypes differed significantly in their response to inoculation. The most resistant were Torka and Zebra among common wheat cultivars, and Weisser Grannenspelz among spelt cultivars. The average content of free phenolic compounds in spikes of spelt and common wheat was 1246.56 μg g−1 and 1236.58 μg g−1, respectively. The cultivars whose spikes contained the largest amounts of phenols showed the weakest response to F. culmorum infection. No significant differences were observed with regard to peroxidase content, which was 5.22 U g−1 in common wheat spikes and 5.14 U g−1 in spelt spikes. Methanol extracts from spikes of all wheat cultivars contained antifungal substances. The extracts from spelt spikes inhibited the growth of F. culmorum on PDA to a lesser degree than the extracts from common wheat spikes. This corresponds to the results of field trials, in which T. spelta generally exhibited a stronger response to F. culmorum infection than common wheat. The high correlation (r = 0.816) between mycelium growth inhibition on the medium and F. culmorum infection indicates that an evaluation of the antifungal activity of extracts from spikes may be used for the selection of breeding materials directed towards increased resistance to Fusarium head blight.  相似文献   

6.
Summary  In the present study, the influence of Bacillus subtilis JA on arbuscular mycorrhizal fungi (AMF) was evaluated by either pot culture or in vitro conditions, respectively. Under the pot culture conditions, the inoculation of B. subtilis JA decreased the frequency (% F) of the root colonization by indigenous arbuscular mycorrhizal fungi and the shoot dry weight of maize (Zea mays L.), but had no apparent effect on the intensity (% I) of AM fungal root colonization. The unknown volatile emitted from the B. subtilis JA in vitro significantly inhibited spore germination and the hyphal growth in the dual-compartment experiments. Moreover, the data from the direct interaction between B. subtilis JA and Glomus etunicatum showed that soluble antifungal lipopeptides influenced the development of AMF. Therefore, the application of antifungal Bacillus strains should take the compatibility with the indigenous beneficial fungi into consideration.  相似文献   

7.
The ethanolic and aqueous extracts from in vitro shoots of Quillaja saponaria Mol. (Quillay) were studied for their antifungal activity against the phytopathogenic fungus Botrytis cinerea Pers. These extracts reduced conidial germination and mycelial growth of B. cinerea, ethanolic extracts being more active than aqueous extracts. In addition, the damage areas produced by this fungus on tomato leaves and strawberry fruits pre-treated with quillay extracts were diminished. The fungitoxic effect of in vitro-grown quillay extract was similar to those obtained with commercial fungicides of both natural (BC-1000) and synthetic (iprodione–dicarboximide) origin. On the other hand, the antifungal action of quillay extracts obtained from adult trees naturally grown was only slightly superior to the fungitoxic activity of the extract from in vitro plants. HPLC analysis of the extract showed that it contained saponins and some phenolic compounds such as chlorogenic, caffeic, vanillic, and salicylic acids, and scopoletin, which have been identified as antifungal agents on phytopathogenic fungi. The results obtained in this work, suggests that extracts of in vitro-grown quillay have an important protective effect against B. cinerea and support the use of an in vitro culture system as a biotechnological alternative to obtain environmental safe antifungal quillay extracts to control B. cinerea, contributing to the preservation of this indigenous Chilean species.  相似文献   

8.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

9.
A strain of Ulocladium botrytis isolated from diseased Orobanche crenata shoots caused disease on the parasitic weed in pathogenicity tests. The potential of the fungus to be developed as a mycoherbicide for Orobanche spp. was further investigated. Although the fungus significantly decreased O. crenata germination in vitro by 80%, it did not generally lead to a decreased number of O. crenata shoots or tubercles in inoculated root chambers or pots. However, the number of diseased or dead tubercles and underground shoots was significantly increased compared to the noninoculated treatments. Postemergence inoculation of O. crenata shoots with a conidial suspension resulted in the death of almost all inoculated plants 14 days after application under greenhouse conditions. In preliminary host-range studies, the pathogen caused disease on Orobanche cumana on sunflower whereas on Orobanche aegyptiaca shoots parasitizing tomato only minimal disease symptoms could be detected after postemergence inoculation. Based on the results of our investigations, we conclude that Ulocladium botrytis has only a limited potential to be used as a biocontrol agent against Orobanche spp.  相似文献   

10.
A greenhouse test was carried out to examine the effects on tomato growth of application of purple non-sulfur bacterium Rhodopseudomonas sp. which had enhanced germination and growth of tomato seed under axenic conditions. The shoot length of tomato plant inoculated by Rhodopseudomonas sp. KL9 increased by 34.6% compared to that of control in 8 weeks of cultivation. During the same period, this strain increased 120.6 and 78.6% of dry weight of shoot and root of tomato plants, respectively. The formation ratio of tomato fruit from flower was also raised by inoculation of KL9. In addition, Rhodopseudomonas sp. KL9 treatment enhanced the fresh weight and lycopene content in the harvested tomato fruits by 98.3 and 48.3%, respectively compared to those of the uninoculated control. When the effect on the indigenous bacterial community and fate of the inoculated Rhodopseudomonas sp. KL9 were monitored by denaturing gradient gel electrophoresis analysis, its application did not affect the native bacterial community in tomato rhizosphere soil, but should be repeated to maintain its population size. This bacterial capability may be applied as an environment-friendly biofertilizer to cultivation of high quality tomato and other crops including lycopene-containing vegetables and fruits.  相似文献   

11.
Bacillus licheniformis N1, which has previously exhibited potential as a biological control agent, was investigated to develop a biofungicide to control the gray mold of tomato caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were developed using fermentation cultures of the bacteria in Biji medium, and their ability to control gray mold on tomato plants was evaluated. The results of pot experiments led to the selection of the wettable powder formulation N1E, based on corn starch and olive oil, for evaluation of the disease control activity of this bacterium after both artificial infection of the pathogen and natural disease occurrence under production conditions. In plastic-house artificial infection experiments, a 100-fold diluted N1E treatment was found to be the optimum biofungicide spray formulation. This treatment resulted in the significant reduction of symptom development when N1E was applied before Bo. cinerea infection, but not after the infection. Both artificial infection experiments in a plastic house and natural infection experiments under production conditions revealed that the N1E significantly reduced disease severity on tomato plants and flowers. The disease control value of N1E on tomato plants was 90.5% under production conditions, as compared to the 77% conferred by a chemical fungicide, the mixture of carbendazim and diethofencarb (1:1). The prevention of flower infection by N1E resulted in increased numbers of tomato fruits on each plant. N1E treatment also had growth promotion activity, which showed the increased number of tomato fruits compared to fungicide treatment and non-treated control and the increased fruit size compared the non-treated control under production conditions. This study suggests that the corn starch-based formulation of B. licheniformis developed using liquid fermentation will be an effective tool in the biological control of tomato gray mold.  相似文献   

12.
Bacterial wilt (Ralstonia solanacearum) of tomato, Lycopersicon esculentum, causes a considerable amount of damage to tomato in Southern China. Biological control is one of the more promising approaches to reduce the disease incidence and yield losses caused by this disease. Based on antagonistic activity against R. solanacearum and three soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains Xa6 (Acinetobacter sp.) and Xy3 (Enterobacter sp.) were selected out of fourteen candidates as potential biocontrol agents. In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, biocontrol efficacy, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher biocontrol efficacy and plant-yield increase, and this method was also easier to operate in the field on a large scale. Field trials were conducted for further evaluation of these two antagonistic strains. In both greenhouse and field experiments, the strain Xy3 had a better control effect against bacterial wilt than Xa6 did, while Xa6 caused higher biomass or yield increases. As recorded on the 75th day after treatment in two field experiments, biocontrol efficacy of Xy3 was about 65% in both field trials, and the yield increases caused by Xa6 were 32.4 and 40.7%, respectively, in the two trials. This is the first report of an Acinetobacter sp. strain used as a BCA against Ralstonia wilt of tomato.  相似文献   

13.
Ferrara G  Loffredo E  Senesi N 《Planta》2006,223(5):910-916
The effects of the endocrine disruptor bisphenol A (BPA) at concentrations of 10 and 50 mg l−1 were evaluated on the germination and morphology, micronuclei (MN) content in root tip cells and BPA bioaccumulation of hydroponic seedlings of broad bean (Vicia faba L.), tomato (Lycopersicon esculentum Mill.), durum wheat (Triticum durum Desf.) and lettuce (Lactuca sativa L.) after 6 and 21 days of growth. In general, BPA at any dose used did not inhibit germination and early growth (6 days) of seedlings of the species examined, with the exception of primary root length of tomato which decreased at the higher BPA dose. In contrast, an evident phytotoxicity was induced by BPA in all species after 21 days of growth with evident morphological anomalies and significant reductions of the lengths and fresh and dry weights of shoots and roots of seedlings. With respect to the nutrient medium without seedlings, BPA concentration decreased markedly during the growth period in the presence of broad bean and tomato seedlings, and limitedly in the presence of durum wheat and, especially, lettuce. Further, the presence of BPA measured in roots and shoots of broad bean and tomato after 21-day growth indicated that bioaccumulation of BPA had occurred. The number of MN in broad bean and durum wheat root tip cells increased markedly by treatment with BPA at both concentrations, thus suggesting a potential clastogenic activity of BPA in these species.  相似文献   

14.
Infection of tomato stem wounds by Botrytis cinerea is an important problem which can cause severe economic losses in greenhouse tomato crops. Three moderately halophilic bacteria were tested for their ability to protect pruning wounds from attacks by B. cinerea under growth chamber conditions. The severity of the disease estimated by the length of the rotted stem was used to calculate the area under the disease progress curves (AUDPC). Bacterial antagonists (B1, B2 and B3) were very effective in controlling Botrytis-infection on the tomato stems during the first 6 days and later by the end of the experiment. Plants treated with Bacillus subtilis (B1) had the lowest AUDPC (0). It was followed by B. subtilis (B3) and Halomonas sp. (B2) with AUDPC of 9.8 and 17.02, respectively. While the B1 strain best inhibited grey mold development when applied as young culture (24 h), the B3 strain performed better as an older culture (48 h). In contrast to the results obtained with Bacillus species, the efficacy of the bacterial treatment B2 seems to be independent of the growth phase. The co-cultures with fungal spores and either B. subtilis (B1) or Halomonas sp. (B2) applied as a 24 h bacterial culture completely inhibited the germination of B. cinerea after 24 h at 21°C.  相似文献   

15.
【背景】由禾谷镰刀菌(Fusarium graminearum)引起的小麦赤霉病严重威胁我国的小麦生产。【目的】筛选对禾谷镰刀菌具有拮抗能力的链霉菌菌株,为生防菌剂开发提供理论基础。【方法】利用平板对峙法筛选对禾谷镰刀菌具有拮抗能力的链霉菌;通过形态特征、生理生化特征和16S rRNA基因序列分析对其进行鉴定;通过病原菌菌丝生长、孢子产生及萌发抑制试验分析其发酵液的抑菌活性;利用人工接种试验测定该菌株发酵液的防病效果。【结果】筛选到一株对禾谷镰刀菌具有较强拮抗活性的链霉菌21-1,抑菌率为59.5%。依据形态特征、生理生化特性和16S rRNA基因序列分析,将该菌株鉴定为黄三素链霉菌(Streptomycesflavotricini)。菌株21-1发酵液能够抑制禾谷镰刀菌的菌丝生长、孢子产生及萌发过程,而且可以降低禾谷镰刀菌菌丝中可溶性蛋白质的含量,并增加丙二醛的含量。菌株21-1可以产生蛋白酶及纤维素酶。菌株21-1菌液10倍稀释液对小麦赤霉病的防效最佳,为70.1%。此外,菌株21-1发酵液对其他8种植物病原菌均有较好的抑制作用。【结论】菌株21-1对禾谷镰刀菌有较好的抑菌活性,具...  相似文献   

16.
【背景】壳聚糖是广泛存在于甲壳动物的一种多糖,具有广谱的抗真菌活性,但壳聚糖是否影响炭黑曲霉(Aspergillus carbonarius)和硫色镰刀菌(Fusarium sulphureum)生长和发育尚未见报道。【目的】明确不同浓度壳聚糖对A. carbonariusF. sulphureum生长和发育的影响。【方法】通过在PDA培养基中添加不同浓度壳聚糖,测定两种真菌的菌落直径、生物量和菌丝干重,观察产孢量、孢子萌发和芽管长度,比较抑菌的差异。【结果】壳聚糖处理可显著改变两种真菌的菌落形态,处理浓度越高菌落皱缩和变形越明显;壳聚糖还可以有效抑制两种真菌的菌落生长、菌丝干重和菌丝生物量,抑制效果呈明显的浓度依赖,对F. sulphureum的抑制效果更好。壳聚糖可抑制两种真菌的产孢量、孢子萌发和芽管伸长,处理浓度越高抑制效果越好,对F. sulphureum的抑制效果更为明显。壳聚糖对A. carbonariusF. sulphureumEC50值分别为0.12 mg/mL和0.075 mg/mL。【结论】壳聚糖可有效抑制A. carbonariusF. sulphureum的生长发育,抑制效果呈浓度依赖,F. sulphureum对壳聚糖更为敏感。  相似文献   

17.
A. Schubert  P. Wyss 《Mycorrhiza》1995,5(6):401-404
Root extracts of leek (Allium porrum L.) and soybean (Glycine max L. Merr.) showed trehalase activity which was inhibited by phloridzin and was several times higher than the activity of general -glucosidase. The activity had an acidic optimum. Trehalase activity in extracts of sporocarps and extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. (Trappe & Gerd.) was higher than in root extracts and had an optimum at pH 7. Following inoculation with G. mosseae, trehalase activity increased in mycorrhizal roots above the levels observed in nonmycorrhizal roots. Irrespective of fungal colonization, root trehalase activity increased in the presence of Mg2+, decreased in the presence of Mn2+ and Zn2+, and was unaffected by Na2EDTA.  相似文献   

18.
Strains of selected bacteria and Trichoderma harzianum isolated from sugarcane rhizosphere and endosphere regions were tested for the production of chitinolytic enzymes and their involvement in the suppression of Colletotrichum falcatum, red rot pathogen of sugarcane. Among several strains tested for chitinolytic activity, 12 strains showed a clearing zone on chitin-amended agar medium. Among these, bacterial strains AFG2, AFG 4, AFG 10, FP7 and VPT4 and all the tested T. harzianum strains produced clearing zones of a size larger than 10 mm. The antifungal activity of these strains increased when chitin was incorporated into the medium. Trichoderma harzianum strain T5 showed increased levels of activity of N-acetylglucosaminidase and -1,3-glucanase when grown on minimal medium containing chitin or cell wall of the pathogen. Lytic enzymes of bacterial strains AFG2, AFG4, VPT4 and FP7 and T. harzianum T5 inhibited conidial germination and mycelial growth of the pathogen. Enzymes from T. harzianum T5 were found to be the most effective in inhibiting the fungus. When mycelial discs of the pathogen were treated with the enzymes, electrolytes were released from fungal mycelia. The results indicated that antagonistic T. harzianum T5 caused a higher level of lysis of the pathogen mycelium, and the inhibitory effect was more pronounced when the lytic enzymes were produced using chitin or cell wall of the pathogen as carbon source.  相似文献   

19.
This study aimed to examine the induction of defense responses in tomato elicited by Methylobacterium oryzae CBMB20 as a consequence of reduced stress ethylene level possibly through its ACC deaminase activity. Significantly increased activities of pathogenesis-related (PR) proteins and defense enzymes such as β-1,3-glucanase, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were noted in M. oryzae CBMB20 pretreated and challenged with Pseudomonas syringae pv. tomato (Pst) compared to either control or M. oryzae-treated tomato plants in both growth chamber and greenhouse conditions. Increased PR proteins and defense enzyme activities were correlated with the reduction of stress ethylene level. M. oryzae CBMB20 reduced the stress ethylene level about 27% and 55% when challenged with Pst, in growth chamber and greenhouse on day 7 respectively and the effect was comparable to that of the chemical ethylene biosynthesis inhibitor AVG, L-α-(2-aminoethoxyvinyl)-glycine hydrochloride. As a consequence of reduced stress ethylene level and its effect on defense response in crop plants, the disease severity was reduced 26% in M. oryzae CBMB20-treated plants challenged with pathogen. Therefore, inoculation of M. oryzae CBMB20 would induce the defense enzymes and contribute to the enhanced resistance of tomato plants against the pathogen Pst.  相似文献   

20.
A fungus, identified as Alternaria alternata, was isolated from dying or dead aphids and proved to be pathogenic. It was isolated from different parts of Greece from aphid specimens on cultivated plants, ornamentals and weeds. In the laboratory, disease development started with the germination of spores on the insect integument and the subsequent growth of mycelium. The fungus formed apical and intercalary, globose or lobate appressoria which were firmly attached onto the host exoskeleton and facilitated entrance of the mycelium into the insect body. Under favorable conditions of temperature (15–35 °C) and relative humidity (100%), infected aphids died in 2–4 days. A characteristic brown discoloration accompanied the death of the insects. Both mycelial growth and sporulation were profuse on dead specimens. The pathogen infected all 26 aphid species tested but was unable to infect other insects (Drosophila melanogaster and Ceratitis capitata) or aphid host plants. There were significant differences in mortality rate among aphid species only during the first two days after inoculation. It is suggested that A. alternata may be a good candidate to be exploited for the biological control of aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号