首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonfunctional mutation of the homothallic gene HML alpha, designated hml alpha, produced two mutant alleles, hml alpha-1 and hml alpha-2. Both mutant clones were mixed cultures consisting of a mating-type cells and nonmating haploid cells. The frequencies of the two cell types were different, and a few diploid cells able to sporulate were found in the hml alpha-2 mutant. Conversions of an a mating-type cell to nonmater, and vice versa, were observed in both mutants. The conversion of an a mating phenotype to nonmating is postulated to occur by alteration of the a mating type to the sterile mating-type allele in the hml alpha-1 mutant. In tetrad dissection of prototrophic diploids that were obtained by rare mating of hml alpha-1 mutants with a heterothallic strain having the MATa ho HMRa HMLa genotype, many mating-deficient haploid segregants were found, while alpha mating-type segregants were observed in a similar diploid using an hml alpha-2 mutant. The mating-type-deficient haploid segregants were supposed to have the sterile alpha mating-type allele because the nonmating genetic trait always segregated with the mating-type locus. Sporogenous diploid cells obtained in the hml alpha-2 mutant clone had the MATa/MAT alpha HO/HO HMRa/HMRa hml alpha-2/hml alpha-2 genotype. These observations suggested that the hml alpha-1 allele produces a transposable element that gives rise to the sterile alpha mating type by transposition into the mating-type locus, and that the hml alpha-2 allele produces an element that provides alpha mating-type information, but is defective in the structure for transposition.  相似文献   

2.
In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.  相似文献   

3.
A double-stranded DNA cut has been observed in the mating type (MAT) locus of the yeast Saccharomyces cerevisiae in cultures undergoing homothallic cassette switching. Cutting is observed in exponentially growing cells of genotype HO HML alpha MAT alpha HMR alpha or HO HMLa MATa HMRa, which switch continuously, but not in a/alpha HO/HO diploid strains, in which homothallic switching is known to be shut off. Stationary phase cultures do not exhibit the cut. Although this site-specific cut occurs in a sequence (Z1) common to the silent HML and HMR cassettes and to MAT, only the Z1 sequence at the MAT locus is cut. The cut at MAT occurs in the absence of the HML and HMR donor cassettes, suggesting that cutting initiates the switching process. An assay for switching on hybrid plasmids containing mata- cassettes has been devised, and deletion mapping has shown that the cut site is required for efficient switching. Thus a double-stranded cut at the MAT locus appears to initiate cassette transposition-substitution and defines MAT as the recipient in this process.  相似文献   

4.
Analysis of Y-Linked Mutations to Male Sterility in DROSOPHILA MELANOGASTER   总被引:3,自引:2,他引:1  
Kennison JA 《Genetics》1983,103(2):219-234
Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MATa and MAT alpha. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML OR HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MAT alpha cells carring AON1 are defective in mating. (2) AON1 allows MAT alpha/MAT alpha but not MATa/MATa diploids to sporulate; thus, AON1 mimics the MATa requirement for sporulation. (3) mata-1 cells that carry AON1 are MATa phenocopies, i.e., MAT alpha/mata-1 AON1 diploids behave as standard MAT alpha/MATa cells; therefore, AON1 suppresses the defect of mata-1. (4) AON1 maps at or near HMRa. (5) Same-site revertants from AON1 lose the ability to convert mating type to MATa, indicating that reversion is associated with the loss of a functional HMRa locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMRa.  相似文献   

5.
A mutation defective in the homothallic switching of mating type alleles, designated hml alpha-2, has previously been characterized. The mutation occurred in a cell having the HO MATa HML alpha HMRa genotype, and the mutant culture consisted of ca. 10% a mating type cells, 90% nonmater cells of haploid cell size, and 0.1% sporogenous diploid cells. Genetic analyses revealed that nonmater haploid cells have a defect in the alpha 2 cistron at the MAT locus. This defect was probably caused by transposition of a cassette originating from the hml alpha-2 allele by the process of the homothallic mating type switch. That the MAT locus of the nonmater cells is occupied by a DNA fragment indistinguishable from the Y alpha sequence in electrophoretic mobility was demonstrated by Southern hybridization of the EcoRI-HindIII fragment encoding the MAT locus with a cloned HML alpha gene as the probe. The hml alpha-2 mutation was revealed to be a one-base-pair deletion at the ninth base pair in the X region from the X and Y boundary of the HML locus. This mutation gave rise to a shift in the open reading frame of the alpha 2 cistron. A molecular mechanism for the mating type switch associated with the occurrence of sporogenous diploid cells in the mutant culture is discussed.  相似文献   

6.
Mascioli DW  Haber JE 《Genetics》1980,94(2):341-360
Homothallic strains of Saccharomyces cerevisiae are able to switch from one mating-type to the other as frequently as every cell division. We have identified a cis-dominant mutation of the MATa locus, designated MATa-inc, that can be converted to MATalpha at only about 5% of the normal efficiency. In homothallic MATa-inc/mata* diploids, the MATa-inc locus switched to MATalpha in only one of 30 cases, while the mata* locus switched to MATalpha in all 30 cases. The MATa-inc mutation can be "healed" by a series of switches, first to MATalpha and then to a normal allele of MATa. These data are consistent with the "cassette" model of Hicks, Strathern and Herskowitz (1977), in which mating conversions involve the transposition of wild-type copies of a or alpha information from silent genes elsewhere in the genome. The MATa-inc mutation appears to alter a DNA sequence necessary for the replacement of MATa by MATalpha. The MATa-inc mutation has no other effect on MATa functions. In beterothallic backgrounds, the mutation has no effect on the sensitivity to alpha-factor, synthesis of a-factor, expression of barrier phenotype or ability to mate or sporulate.--The MATa-inc allele does, however, exhibit one pleiotropic effect. About 1% of homothallic MATa-inc cells become completely unable to switch mating type because of mutations at HMa, the locus proposed to carry the silent copy of alpha information.--In addition, we have isolated a less efficient allele of the HO gene.  相似文献   

7.
Haber JE  George JP 《Genetics》1979,93(1):13-35
Studies of heterothallic and homothallic strains of Saccharomyces cerevisiae have led to the suggestion that mating-type information is located at three distinct sites on chromosome 3, although only information at the mating-type (MAT) locus is expressed (Hicks, Strathern and Herskowitz, 1977). We have found that the recessive mutation cmt permits expression of the normally silent copies of mating-type information at the HMa and HM alpha loci. In haploid strains carrying HMa and HM alpha, the cmt mutation allows the simultaneous expression of both a and alpha information, leading to a nonmating ("MATa/MAT alpha") phenotype. The effects of cmt can be masked by changing the mating-type information at HMa or HM alpha. For example, a cell of genotype MATa hma HM alpha cmt has an a mating type, while a MAT alpha hma HM alpha cmt strain is nonmating. Expression of mating-type information at the HM loci can correct the mating and sporulation defects of the mata* and mat alpha 10 alleles. Meiotic segregants recovered from cmt/cmt diploids carrying the mat mutations demonstrate that these mutants are not "healed" to normal MAT alleles, as is the case in parallel studies using the homothallism gene HO.--All of the results are consistent with the notion that the HMa and hm alpha alleles both code for alpha information, while HM alpha and hma both code for a information. The cmt mutation demonstrates that these normally silent copies of mating-type and sporulation information can be expressed and that the information at these loci is functionally equivalent to that found at MAT. The cmt mutation does not cause interconversions of mating-type alleles at MAT, and it is not genetically linked to MAT, HMa, HM alpha or HO. In cmt heterozygotes, cmt becomes homozygous at a frequency greater than 1% when the genotype at the MAT locus is mata*/MAT alpha or mat alpha 10/MATa.  相似文献   

8.
We sequenced two alleles of the MATa locus of Saccharomyces cerevisiae that reduce homothallic switching and confer viability to HO rad52 strains. Both the MATa-stk (J. E. Haber, W. T. Savage, S. M. Raposa, B. Weiffenbach, and L. B. Rowe, Proc. Natl. Acad. Sci. USA 77:2824-2828, 1980) and MATa-survivor (R. E. Malone and D. Hyman, Curr. Genet. 7:439-447, 1983) alleles result from a T----A base change at position Z11 of the MAT locus. These strains also contain identical base substitutions at HMRa, so that the mutation is reintroduced when MAT alpha switches to MATa. Mating-type switching in a MATa-stk strain relative to a MATa Z11T strain is reduced at least 50-fold but can be increased by expression of HO from a galactose-inducible promoter. We confirmed by Southern analysis that the Z11A mutation reduced the efficiency of double-strand break formation compared with the Z11T variant; the reduction was more severe in MAT alpha than in MATa. In MAT alpha, the Z11A mutation also creates a mat alpha 1 (sterile) mutation that distinguishes switches of MATa-stk to either MAT alpha or mat alpha 1-stk. Pedigree analysis of cells induced to switch in G1 showed that MATa-stk switched frequently (23% of the time) to produce one mat alpha 1-stk and one MAT alpha progeny. This postswitching segregation suggests that Z11 was often present in heteroduplex DNA that was not mismatch repaired. When mismatch repair was prevented by deletion of the PMS1 gene, there was an increase in the proportion of mat alpha 1-stk/MAT alpha sectors (59%) and in pairs of switched cells that both retained the stk mutation (27%). We conclude that at least one strand of DNA only 4 bp from the HO cut site is not degraded in most of the gene conversion events that accompany MAT switching.  相似文献   

9.
Homothallic switching of yeast mating type genes occurs as often as each cell division, so that a colony derived from a single haploid spore soon contains an equal number of MATa and MAT alpha cells. Cells of opposite mating types conjugate, and eventually the colony contains only nonmating MATa/MAT alpha diploids. Mutations that reduce the efficiency of homothallic MAT conversions yield colonies that still contain many haploid cells of the original spore mating type plus a few recently generated cells of the opposite mating type. These (a greater than alpha)- or (alpha greater than a)-mating colonies also contain some nonmating diploid cells. As an alternative to microscopic pedigree analysis to determine the frequency of mating type conversions in a variety of mutant homothallic strains, we analyzed the proportions of MATa, MAT alpha, and MATa/MAT alpha cells in a colony by examining the mating phenotypes of subclones. We developed a mathematical model that described the proportion of cell types in a slow-switching colony. This model predicted that the proportion of nonmating cells would continually increase with the size (age) of a colony derived from a single cell. This prediction was confirmed by determining the proportion of cell types in colonies of an HO swi1 strain that was grown for different numbers of cell divisions. Data from subcloning (a greater than alpha) and (alpha greater than a) colonies from a variety of slow-switching mutations and chromosomal rearrangements were used to calculate the frequency of MAT conversions in these strains.  相似文献   

10.
Mutation of the two homothallic genes, HML alpha/HMLa and HMRa/HMR alpha, in homothallic strains of Saccharomyces cerevisiae was studied. Of 11 mutants of the HML alpha gene, eight were due to a phenotypic mutation from HML alpha to HMLa, i.e., a mutation causing a change in function of the original HML allele to that of the other HML allele (functional mutation), and three were due to a defective mutation at the HML alpha gene, i.e., a mutation causing a nonfunctional allele (nonfunctional mutation). All 14 mutants of the HMRa gene, on the other hand, were due to a phenotypic mutation from HMRa to HMR alpha i.e., a functional mutation. Phenotypic reverse mutations, i.e., HMLa to HML alpha and HMR alpha to HMRa, were also observed in the cultivation of EMS (ethyl methanesulfonate) treated spores having the HO HMR alpha HMLa genotype. Mutation from heterothallic cells to homothallism was observed in a nonfunctional mutant of the HML alpha gene, by mutagenesis with EMS, but not in the functional mutants of the HML alpha and HMRa genes or in the authentic strains having the alpha HO HMR alpha HML alpha (alpha Hp) and a HO HMRa HMLa (a Hq) genotypes. These observations suggest that the functional mutation is not caused by the direct mutation from a homothallic allele to the opposite, but by replacement of a transposable genic element produced from a homothallic locus with a region of a different homothallic locus. These observations also support the controlling-element model and the cassette model, which have been proposed to explain the mating-type differentiation by the homothallic genes.  相似文献   

11.
The Genetic System Controlling Homothallism in Saccharomyces Yeasts   总被引:21,自引:7,他引:14       下载免费PDF全文
There are four types of life cycles in Saccharomyces cerevisiae and its related species. A perfect homothallic life cycle (the Ho type) is observed in the classic D strain. Two other types show semi-homothallism; one of them shows a 2-homothallic diploid:2alpha heterothallic haploid segregation (the Hp type) and another, a 2-homothallic:2a segregation (the Hq type). In the segregants from these Ho, Hp, and Hq diploids, each homothallic segregant shows the same segregation pattern as its parental diploid. The fourth type has a heterothallic life cycle showing a 2a:2alpha segregation and the diploids are produced by the fusion of two haploid cells of opposite mating types. The diploids prepared by the crosses of alpha Hp (an alpha haploid segregant from the Hp diploid) to a Hq (an a haploid from the Hq diploid) segregated two types (Type I and II) of the Ho type homothallic clone among their meiotic segregants. Genetic analyses were performed to investigate this phenomenon and the genotypes of the Ho type homothallic clones of Type I and Type II. Results of these genetic analyses have been most adequately explained by postulating three kinds of homothallic genes, each consisting of a single pair of alleles, HO/ho, HMalpha/hmalpha, and HMa/hma, respectively. One of them, the HMalpha locus, was proved to be loosely linked (64 stranes) to the mating-type locus. A spore having the HO hmalpha hma genotype gives rise to an Ho type homothallic diploid (Type I), the same as in the case of the D strain which has the HO HMalpha HMa genotype (Type II). A spore having the a HO hmalpha HMa or alpha HO HMalpha hma genotype will produce an Hp or Hq type homothallic diploid culture, respectively. The other genotypes, a HO HMalpha hma, alpha HO hmalpha HMa, and the genotypes combined with the ho allele give a heterothallic character to the spore culture. A possible molecular hypothesis for the mating-type differentiation with the controlling elements produced by the HMalpha and HMa genes is proposed.  相似文献   

12.
Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.  相似文献   

13.
SAD mutation of Saccharomyces cerevisiae is an extra a cassette.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sporulation of Saccharomyces cerevisiae ordinarily requires the a1 function of the a mating type locus. SAD is a dominant mutation that allows strains lacking a1 (MAT alpha/MAT alpha and mata1/MAT alpha diploids) to sporulate. We provide functional and physical evidence that SAD is an extra cassette in the yeast genome, distinct from those at HML, MAT, and HMR. The properties of SAD strains indicate that the a cassette at SAD produces a limited amount of a1 product, sufficient for promoting sporulation but not for inhibiting mating and other processes. These conclusions come from the following observations. (i) SAD did not act by allowing expression of HMRa: mata1/MAT alpha diploids carrying SAD and only alpha cassettes at HML and HMR sporulated efficiently. (ii) SAD acted as an a cassette donor in HML alpha HMR alpha strains and could heal a mata1 mutation to MATa as a result of mating type interconversion. (iii) The genome of SAD strains contained a single new cassette locus, as determined by Southern hybridization. (iv) Expression of a functions from the SAD a cassette was limited by Sir: sir- SAD strains exhibited more extreme phenotypes than SIR SAD strains. This observation indicates that SAD contains not only cassette information coding for a1 (presumably from HMRa) but also sites for Sir action.  相似文献   

14.
The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.  相似文献   

15.
K. S. Weiler  J. R. Broach 《Genetics》1992,132(4):929-942
Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HML alpha and MAT alpha cells preferentially select HMRa. Such preferential selection indicates that the cell is able to distinguish between HML and HMR during mating type interconversion. Accordingly, we designed experiments to identify those features perceived by the cell to discriminate HML and HMR. We demonstrate that discrimination does not derive from the different structures of the HML and HMR loci, from the unique sequences flanking each donor locus nor from any of the DNA distal to the HM loci on chromosome III. Moreover, we find that the sequences flanking the MAT locus do not function in the preferential selection of one donor locus over the other. We propose that the positions of the donor loci on the left and right arms of chromosome III is the characteristic utilized by the cell to distinguish HML and HMR. This positional information is not generated by either CEN3 or the MAT locus, but probably derives from differences in the chromatin structure, chromosome folding or intranuclear localization of the two ends of chromosome III.  相似文献   

16.
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.  相似文献   

17.
We have identified two novel intermediates of homothallic switching of the yeast mating type gene, from MATa to MAT alpha. Following HO endonuclease cleavage, 5' to 3' exonucleolytic digestion is observed distal to the HO cut, creating a 3'-ended single-stranded tail. This recision is more extensive in a rad52 strain unable to switch. Surprisingly, the proximal side of the HO cut is protected from degradation; this stabilization depends on the presence of the silent copy donor sequences. A second intermediate was identified by a quantitative application of the polymerase chain reaction (PCR). The Y alpha-MAT distal covalent fragment of the switched product appears 30 min prior to the appearance of the MAT proximal Y alpha junction. No covalent joining of MAT distal to HML distal sequences is detected. We suggested that the MAT DNA distal to the HO cut invades the intact donor and is extended by DNA synthesis. This step is prevented in a rad52 strain. These intermediates are consistent with a model for MAT switching in which only the distal side of the HO cut is initially active in strand invasion and transfer of information from the donor.  相似文献   

18.
A mutation has been identified that suppresses the mating and sporulation defects of all mutations in the mating-type loci of S. cerevisiae. This suppressor, sir1-1, restores mating ability to mat alpha 1 and mat alpha 2 mutants and restores sporulation ability to mat alpha 2 and mata1 mutants. MATa sir1-1 strains exhibit a polar budding pattern and have reduced sensitivity to alpha-factor, both properties of a/alpha diploids. Furthermore, sir1-1 allows MATa/MATa, mat alpha 1/mat alpha/, and MAT alpha/MAT alpha strains to sporulate efficiently. All actions of sir1-1 are recessive to SIR1. The ability of sir1-1 to supply all functions necessary for mating and sporulation and its effects in a cells are explained by proposing that sir1-1 allows expression of mating type loci which are ordinarily not expressed. The ability of sir1-1 to suppress the mat alpha 1-5 mutation is dependent on the HMa gene, previously identified as required for switching of mating types from a to alpha. Thus, as predicted by the cassette model, HMa is functionally equivalent to MAT alpha since it supplies functions of MAT alpha. We propose that sir1-1 is defective in a function. Sir ("Silent-information regulator"), whose role may be to regulate expression of HMa and HM alpha.  相似文献   

19.
Sporulation in Saccharomyces cerevisiae normally occurs only in MATa/MAT alpha diploids. We show that mutations in RME1 bypassed the requirements for both a and alpha mating type information in sporulation and therefore allowed MATa/MATa and MAT alpha/MAT alpha diploids to sporulate. RME1 was located on chromosome VII, between LEU1 and ADE6.  相似文献   

20.
Fungi capable of sexual reproduction use heterothallic (self-sterile) or homothallic (self-fertile) mating strategies. In most ascomycetes, a single mating type locus, MAT, with two alternative forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes, these alternative idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a species that is capable of both selfing and outcrossing. G. zeae is a devastating cereal pathogen of ubiquitous geographical distribution, and also a producer of mycotoxins that threaten human and animal health. We asked whether G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild-type haploid MAT1-1; MAT1-2 strain, resulting in MAT1-1; mat1-2, mat1-1; MAT1-2 strains that were self-sterile, yet able to cross to wild-type testers and, more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. They also indicated that both MAT idiomorphs are required for self-fertility. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of pathogenicity and other traits, such as the ability to produce mycotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号