首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A number of cya and crp mutants of Escherichia coli HfrH were analyzed for several Tra functions of the F plasmid. The mutants were observed to be deficient in conjugal donor ability, absorption of phages MS2 and Q beta and surface exclusion. These defects were suppressed in cya mutants grown with cAMP supplementation. A cAMP concentration of 3 X 10(-4) M produced maximal suppression of donor ability defect in a cya strain. cAMP did not suppress the Tra- phenotype of crp mutants. Latent periods of MS2 were shorter in cya and crp bacteria. Phage T7 development appeared similar in wild type, cya, and crp cells. It is concluded that tra genes of F plasmid are expressed only to a small extent in cya and crp mutants and that cAMP and its receptor protein are required for the normal expression of tra genes.  相似文献   

3.
4.
In Escherichia coli there is a large increase of cAMP synthesis in crp strains, which are deficient in the catabolite gene activator protein. In this work it was shown that this increase in cAMP synthesis does not occur in crp crr strains, deficient in both the catabolite gene activator protein and enzymeIII-glucose, a component of the phosphotransferase system. It was also shown that the other components of the phosphotransferase system are required to obtain the increase of cAMP synthesis in a crp background. Adenylate cyclase mutants were obtained, by random mutagenesis, which had partial adenylate cyclase activity but which did not exhibit increased levels of cAMP in a crp background. For three mutants the mutation was identified as a single point mutation. This allowed the identification of residues arginine 188, aspartic acid 414 and glycine 463 which could be involved in the catabolite gene activator protein dependent activation process.  相似文献   

5.
Several spontaneous cya and crp mutants of Escherichia coli have been selected as clones simultaneously resistant to phage lambda and nalidixic acid and characterized. Both cya and crp mutants have been found to grow as cocci with increased doubling times. They have increased resistance to some mutagens (methylmethanesulfonate, ultraviolet light, gamma rays), antibiotics (nalidixic acid, ampicillin), phages (lambda, T6), sublethal heat and hypotonic shock, and decreased resistance to neutral detergents (sodium dodecyl sulfate, sodium deoxycholate), a protein synthesis inhibitor (streptomycin), and a respiratory inhibitor (sodium azide). The nature of changes in cell parameters indicate fundamental alterations in the envelope structure of the cya and crp mutant cells. The new cya and crp mutants have been found to be multiply carbohydrate negative and nonmotile in conformity with similar previously isolated mutants. Studies of revertants and phi80 cya+ and phi80 cya transductants indicated that the pleiotropic phenotype is related to a single mutational event at the cya or the crp locus in the mutants.  相似文献   

6.
Deletion of the Escherichia coli crp Gene   总被引:41,自引:35,他引:6       下载免费PDF全文
Spontaneous crp mutants Escherichia coli were selected from a strain that does not require 3',5'-cyclic adenosine monophosphate for CAP activity. Several deletions of the crp gene were characterized. The crp gene was not essential for growth of E. coli. crp mutations reduced the donor ability of Hfr strains.  相似文献   

7.
Sites of allosteric shift in the structure of the cyclic AMP receptor protein   总被引:32,自引:0,他引:32  
S Garges  S Adhya 《Cell》1985,41(3):745-751
We have characterized crp mutations in E. coli that allow CRP to function without cAMP. crp* mutants carrying a deletion of the gene encoding adenylate cyclase (cya) show significant lac expression. Cyclic GMP, normally an ineffective activator of CRP+, can stimulate these mutant CRP*s to permit greater lac expression in vivo. Cyclic AMP binding to the amino-terminal domain of CRP+ induces an allosteric transition that changes the DNA-binding property of the carboxy domain. The CRP* phenotype is caused by substitution of amino acids with bulkier side chains in the D alpha-helix of the protein's carboxy domain, near the hinge connecting the two domains. These results are consistent with a model in which the mutant CRP*s assume, in part, a conformation normally evoked only by cAMP binding: one in which the relative orientation of the C, D, and F alpha-helices is altered. We define precisely the amino acids of these alpha-helices that interact to cause the allosteric shift.  相似文献   

8.
CRP—cAMP-dependent operons of Escherichia coli can be expressed in cells lacking functional adenylate cyclase when they carry a second-site mutation in the crp gene ( crp* ). It is known that the expression of these operons is repressed by glucose, but the molecular mechanism underlying this cAMP-independent catabolite repression has been a long-standing mystery. Here we address the question of how glucose inhibits the expression of β-galactosidase in the absence of cAMP. We have isolated several mutations in the crp gene that confer a CRP* phenotype. The expression of β-galactosidase is reduced by glucose in cells carrying these mutations. Using Western blotting and/or SDS—PAGE analysis, we demonstrate that glucose lowers the cellular concentration of CRP* through a reduction in crp * mRNA levels. The level of CRP* protein correlates with β-galactosidase activity. When the crp promoter is replaced with the bla promoter, the inhibitory effect of glucose on crp * expression is virtually abolished. These data strongly suggest that the lowered level of CRP* caused by glucose mediates catabolite repression in cya crp * cells and that the autoregulatory circuit of the crp gene is involved in the down-regulation of CRP* expression by glucose.  相似文献   

9.
The effect of cya and crp mutations on the expression of the activity of nucleoside catabolizing genes has been studied in Escherichia coli. It is found that cya and crp mutants lose their ability to grow on nucleosides as carbon sources in spite of the preservation of the basal levels of nucleoside catabolizing enzymes, found in cell-free extracts of cya and crp mutants. It is shown that cya and crp mutations completely release the influence of the regulatory gene cytR on the activity of uridine phosphorylase (udp gene) and thymidine phosphorylase (tpp gene). On this ground it is assumed that the cytR gene product acts at the level of promotors of the corresponding structural genes, causing their insensitivity to the positive action of cAMP--CRP complex. The same data concerning the effect of cya and crp mutations on cytR regulation have been reported [8], but these authors favoured the hypothesis that the cytR gene product is a repressor protein, which binds to the specific operator.  相似文献   

10.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

11.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

12.
H Aiba  T Nakamura  H Mitani    H Mori 《The EMBO journal》1985,4(12):3329-3332
Mutations which permit cAMP binding protein (CRP) to act in the absence of cAMP have been isolated by in vitro mutagenesis of a plasmid containing the cloned crp gene. Adenylate cyclase deficient cells harbouring the mutant (crp*) plasmids exhibited a variety of fermentation profiles on MacConkey indicator plates containing various sugars. beta-galactosidase synthesis in cells carrying the crp* plasmids was activated most by the addition of cGMP as well as cAMP. The sites of mutations which are responsible for the cAMP independent phenotype were determined by in vitro recombination and DNA sequencing. The amino acid substitutions in the mutant proteins were found in two specific regions of the crp gene encoding residues 53-62 and 141-148 of CRP polypeptide. The first region may participate in cAMP binding, while the second appears to be the inter-domain region of the N-terminal cAMP-binding and C-terminal DNA-binding domains.  相似文献   

13.
In Escherichia coli cya mutants, deficient in adenylate cyclase (EC 4.6.1.1), basal cellular rates of glycogen synthesis were lower and the relative increases produced by exogenous cyclic adenosine 3',5'-monophosphate during growth on glucose were greater than in their respective parent strains. These observations provide strong evidence that endogenous cyclic AMP is one of the key regulators of glycogen synthesis in growing E. coli. In crp mutants, deficient in cyclic AMP receptor protein (CRP), the basal cellular rates of glycogen synthesis were much lower than in their respective parent strains. Stimulation of glycogen synthesis by exogenous cyclic AMP was markedly attenuated in the three crp mutants. Thus, stimulation of glycogen synthesis by either endogenous or exogenous cyclic AMP appears to require CRP. Functional CRP appeared to be required for all three responses observed after cyclic AMP addition: an abrupt step-up in the cellular rate of glycogen synthesis, a continuing exponential increase in rate, and a stimulation of the rate during a subsequent nitrogen starvation. To account for these responses, we derived a mathematical model in which the cyclic AMP-CRP complex regulates the differential rate of synthesis of an enzyme metabolizing an effector of the rate-limiting enzyme of glycogen synthesis.  相似文献   

14.
The regulation of crp gene expression by CRP-cAMP complex was studied in E. coli strain by the crp-lac operon fusion. F'141 crp+ episome decreased 5-7 fold the high level of crp-lac expression in crp strains while F'141 crp episome had no effect. The hybrid plasmid pCAP2 crp+ with the intact crp gene did not affect the crp gene expression level in crp mutants, though they had acquired the Crp+ phenotype just as they did in F'141 crp+ presence. The F'141 crp+ and pCAP2 crp+ combination in crp mutants also resulted in decrease of the crp gene expression comparable to the registered in the presence of the F'141 crp+ plasmid. Similar repression occurred only in cya+ strains but not in cya strains. The crp gene is supposed to possess negative regulation by CRP-cAMP complex with a complementary factor also necessary. The latter is evidently located in an E. coli chromosome site overlapped by F'141 episome.  相似文献   

15.
16.
The adenylate cyclase gene of Escherichia coli has been cloned on the plasmid vector pBR325. The hybrid plasmid pTH4 obtained has a molecular weight of 6,4 megadalton and represents pBR325 plasmid with the insertion of 2,8 megadalton in the Pst1 site. The cya mutant bacteria carrying pTH4 recover their ability to utilize mannitol, lactose and other carbohydrates as carbon sources, and lose this ability again in the case of rare spontaneous excision of the DNA insert from the Pst1 site. The phenotypical effect of pTH4 in cya mutants can be only seen in the crp+ genome. The strains carrying pTH4 are also characterized by the ability of beta-galactosidase induction under conditions of catabolite repression. Besides, the bacteria containing cya+ allele on the plasmid do not grow on glycerol, which seems to be caused by toxic concentrations of methylglyoxal formed as a result of the increased intracellular level of cyclic adenosine monophosphate.  相似文献   

17.
The ilvB gene of Salmonella typhimurium encodes the valine-sensitive form of acetohydroxy acid synthase, acetohydroxy acid synthase I, which catalyzes the first step in the parallel biosynthesis of isoleucine and valine. Although nearly all of the other genes involved in this pathway are clustered at minute 83, ilvB was found to lie at minute 80.5. Expression of ilvB was shown to be nearly completely repressed by the end products leucine and valine. Studies in which we used strains with mutations in cya (adenylate cyclase) and crp (cAMP receptor protein) demonstrated that synthesis of acetohydroxy acid synthase I is enhanced by the cAMP-cAMP receptor protein complex. Although no stimulation was achieved by growth on poor carbon sources, introduction of crp on a multicopy plasmid led to markedly increased expression. Strains of S. typhimurium lacking valine-resistant acetohydroxy acid synthase II (ilvG) are like Escherichia coli K-12 in that they are not able to grow in the presence of L-valine owing to a conditional isoleucine auxotrophy. The valine toxicity of these ilvG mutants of S. typhimurium was overcome by increasing the level of acetohydroxy acid synthase I. Enzyme activity could be elevated either by maximally derepressing expression with severe leucine limitation, by introduction of either ilvB or crp on a multicopy plasmid, or by the presence of the ilv-513 mutation. This mutation, which is closely linked to genes encoding the phosphoenol pyruvate:sugar phosphotransferase system (pts), causes highly elevated expression of ilvB that is refractory to repression by leucine and valine, as is the major ilv operon. The response of ilvB to the cAMP-cAMP receptor protein complex was not affected by this lesion. Data obtained by using this mutant led us to propose that the two modes of regulation act independently. We also present some evidence which suggests that ilvB expression may be affected by the phosphoenol pyruvate:sugar phosphotransferase system.  相似文献   

18.
The sfsA gene was identified as one of the sfs genes the over-expression of which stimulates maltose fermentation of the Mal- Escherichia coli strain MK2001 (crp*1, cya:Km(r)). Expression from the malPQ promoter, which was measured using a chromosomally integrated malPp-lacZ fusion, was induced by over-expressing the sfsA gene in the crp*1, cya:Km(r) strain. The level of the MalE protein was increased in crp*1, cya:Km(r) cells over-producing SfsA. The SfsA protein was purified to homogeneity and tested for DNA binding activity. The purified SfsA protein binds to DNA non-specifically. All these results may suggest that SfsA functions as a DNA binding protein to induce the mal genes in coordination with CRP*1.  相似文献   

19.
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).  相似文献   

20.
The three-dimensional model of the Escherichia coli cyclic AMP (cAMP) receptor protein (CRP) shows that several amino acids are involved as chemical contacts for binding cAMP. We have constructed and characterized mutants at four of these positions, E72, R82, S83, and R123. The mutations were made in wild-type crp as well as a cAMP-independent crp, crp*. The activities of the mutant proteins were characterized in vivo for their ability to activate the lac operon. These results provide genetic evidence to support that E72 and R82 are essential and S83 and R123 are important in the activation of CRP by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号