首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The epineural connective tissue sheath investing the subesophageal ganglion of Helix aspersa consists of a superficial region and a deeper region. The superficial region contains masses of globular cells intermingled with smooth muscle cells and nerve fibers all embedded in a connective tissue matrix. The histochemical and fine structural features of the globular cells show seasonal changes. During autumn to winter glycogen accumulates in their cytoplasm; this accumulation is accompanied by the appearance of dense, cytoplasmic globules which fuse together and ultimately form large pools of granular material. All the organelles and cytoplasm are displaced towards the cell periphery. Various cell-membrane invaginations containing dense material are prominent but there is no direct evidence to link these structures with the uptake of metabolites for glycogenesis. In winter there is a concentration of homogeneous, membrane-bound inclusions in the vicinity of the Golgi bodies. It is suggested that these inclusions constitute a lipid store. They decrease in number during summer. The globular cells do not bear any intimate relation to neurons and there is no reason to include these cells in the neuroglia. The muscle cells often weave around the globular cells but there is no direct contact. Nerve fibers innervate at least some of the muscle cells. The connective tissue consists of large and small diameter fibers suggesting that maturation of the fibrous components of the intercellular matrix is taking place in the superficial regions of the epineural sheath.This work has been supported by the Australian Research Grants Committee.  相似文献   

2.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

3.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

4.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

5.
We describe the neurons regulating two separate functions of the pharyngeal retractor muscle (PRM), namely sustained contraction during body withdrawal and rhythmic phasic contractions during feeding, in the snail, Helix pomatia. The distribution of central neurons innervating the PRM is organized into two main units; one in the buccal-cerebral ganglion complex, the other in the subesophageal ganglion complex. Serotonin- (5-HT-), FMRFamide- (FMRFa-), and tyrosine-hydroxylase-immunostained neurons are present among the PRM neurons that densely innervate the PRM. 5HT both decreases and increases the amplitude of the electrically evoked contraction between concentrations of 0.1 M and 1 M. Dopamine (DA) only decreases the amplitude of contraction at a 1-M threshold concentration. In contrast, FMRFa increases the amplitude of the contraction and slightly elevates the tone of the PRM but requires a higher threshold (10 M). Assay by high-performance liquid chromatography of 5HT and DA in the PRM has shown that the 5HT level decreases during locomotion but increases during feeding, whereas the DA level increases during locomotion but slightly decreases during feeding. Thus, different segments of the PRM are innervated by neurons from different loci within the central nervous system. The segments of the PRM distal to the pharynx are innervated from loci of the subesophageal ganglion complex suggesting that they mediate withdrawal. The proximal segment of the PRM is innervated from cerebral and buccal loci indicating that these neurons mediate the feeding rhythm produced by buccal and cerebral feeding central pattern generators to induce rhythmic phasic contractions in the PRM during feeding.This work was supported by Hungarian Scientific Research Fund (OTKA) grants (T034106, T037389, T037505), the Wellcome Trust CRIG Programme, and the Wellcome Trust Travel Grant.  相似文献   

6.
In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that ‘emergency’ behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.  相似文献   

7.
Applying the non-hydrolyzable cholinergic agonist carbachol (CCh) to the cerebral ganglion of Aplysia elicits sustained, regular bursts of activity in the buccal ganglia resembling those seen during biting. The threshold for bursting is 102–4 M. Bursting begins after a 2 to 5 min delay. The burst frequency increases over the first 5 bursts, reaching a plateau value of 3 per minute. Bursting is maintained for over 10 min. Some of the effects of CCh may be attributed to its ability to depolarize and fire CBI-2, a command-like neuron in the cerebral ganglion that initiates biting. CBI-2 is also depolarized by ACh, and by stimulating peripheral sensory nerves. Excitation of CBI-2 caused by carbachol is partially blocked by the muscarinic antagonist atropine. We examined whether CCh-induced bursting is modified in ganglia taken from Aplysia that previously experienced treatments inhibiting feeding, such as satiation, head shock contingent or non-contingent with food, and training animals with an inedible food. No treatment consistently and repeatedly affected the latency, the peak burst period, the length of time that bursting was maintained, or the threshold CCh concentration for eliciting bursting. However, there was a decrease in the rate of the buildup of the buccal ganglion program in previously satiated animals.  相似文献   

8.
Summary A polyclonal antiserum was prepared against an N-terminal modified Cam-HrTH-II (Leu-Asn-Phe-...), one of the members of the large AKH/RPCH peptide family, first isolated from Carausius morosus. The localisation of this peptide was performed by means of immunocytochemical methods in the brain and corpora cardiaca-corpora allata complex of the stick insect, Carausius morosus and the grey fleshfly, Sarcophaga bullata. The distribution patterns of molecules reactive to the Cam-HrTH-II and the LomAKH-I antisera in both insect species were compared. In Carausius, both antisera reacted in the same cell bodies. In Sarcophaga, some neurons were stained by both, others only by one of the two antisera. By combining two different antisera, we demonstrated that there are no Lom-AKH-I-like molecules present in Carausius and that there must occur at least three different AKH-like molecules in the brain of Sarcophaga. One is similar to Cam-HrTH-II, the second to Lom-AKH-I and the third is an AKH/RPCH-like peptide, different from Lom-AKH-I and Cam-HrTH-II.  相似文献   

9.
Summary Polar organisation in the follicles of adult Sarcophaga bullata is reflected in the nurse cell-oocyte axis and in the orientation of the two polar cell pairs in the follicular epithelium. The internal organisation of the nurse cell chamber contributes to polarity but not to dorsoventral asymmetry. Dorsoventral asymmetry is correlated with the eccentric position of the germinal vesicle and the orientation of the polar cell pairs; no other follicle cell specialisations are seen. In an ovary, follicles are preferentially orientated with the dorsal side to the centre of the ovary. Cytoskeletal and some haemolymph proteins are molecular markers of polarity. Thus, in pre-vitellogenic stages, tubulin immunoreactivity is higher in the oocyte than in the nurse cells, actin immunoreactivity is the same over the cystocytes and larval serum proteins are restricted to the poles. During vitellogenesis, both actin and tubulin become more concentrated in the nurse cells and larval serum protein 1 accumulated in the polar cells during border cell migration when yolk polypeptides also accumulate in the oocyte. At the end of vitellogenesis a lipophorin is taken up by the oocyte. No molecular marker of dorsoventral asymmetry was identified.  相似文献   

10.
Higher-order inputs provide important regulatory control to motor circuits, but few cellular-level studies of such inputs have been performed. To begin studying higher-order neurons in an accessible model system, we have localized, in the supraesophageal ganglion (brain), neurons that are candidates for influencing the well-characterized motor circuits in the stomatogastric nervous system (STNS) of the crab Cancer borealis. The STNS is an extension of the central nervous system and includes four ganglia, within which are a set of motor circuits that regulate the ingestion and processing of food. These motor circuits are locally regulated by a set of modulatory neurons, most of which are located in the paired commissural ganglia (CoGs). These modulatory neurons are well-positioned to receive input from brain neurons because the circumesophageal commissures (CoCs) connect the brain with the CoGs. We have performed a series of CoC backfills to localize the brain neurons that are likely to innervate the CoGs and are, therefore, candidates for influencinng the STNS motor patterns. CoC backfill-labeled neuronal somata within the brain are clustered around a subset of anatomically defined neuropil regions. We have concomitantly localized many CoG neurons that project into the brain. This latter pathway presumably includes neurons that provide feedback regarding ongoing STNS activity. Interestingly, nearly all of these brain and CoG neurons project through the medial aspect of the CoC. This work provides an initial framework for future studies to determine the way that higher-order input regulates rhythmic motor patterns. This work was supported by a grant from the National Institute of Neurological Disorders and Strokes (NS42813 to M.P.N.) and a National Science Foundation Fellowship (DGE9616278 to M.S.K.).  相似文献   

11.
The biochemical characterization of nitric oxide synthase (NOS) and its distribution in the central nervous system (CNS) were studied in the heteropteran bug Triatoma infestans. NOS-like immunoreactivity was found in the brain, subesophageal ganglion, and thoracic ganglia by using immunocytochemistry. In the protocerebrum, NOS-immunoreactive (IR) somata were detected in the anterior, lateral, and posterior soma rinds. In the optic lobe, numerous immunostained somata were observed at the level of the first optic chiasma, around the lobula, and in the proximal optic lobe. In the deutocerebrum, NOS-IR perikarya were mainly observed in the lateral soma rind, surrounding the sensory glomeruli, and a few cell bodies were seen in association with the antennal mechanosensory and motor neuropil. No immunostaining could be detected in the antennal nerve. The subesophageal and prothoracic ganglia contained scattered immunostained cell bodies. NOS-IR somata were present in all the neuromeres of the posterior ganglion. Western blotting showed that a universal NOS antiserum recognized a band at 134 kDa, in agreement with the expected molecular weight of the protein. Analysis of the kinetics of nitric oxide production revealed a fully active enzyme in tissue samples of the CNS of T. infestans. This work was funded by the Facultad de Ciencias Biomédicas. Universidad Austral. A.J.N. is supported by the NIH-NIDCD (DC04292). Part of this work was performed at the Arizona Research Laboratories, Division of Neurobiology (Tucson, Arizon, USA) with the support of a Fulbright Research Award to B.P.S.  相似文献   

12.
Summary Fine structural observations were made on the vesicle and granule content of ganglion cells in the posterior subclavian ganglion and peripheral nerve fibers of the upper forelimb of the newt Triturus. The populations of vesicles and granules in normal ganglion cells and nerve fibers were compared with those observed after limb transection. In normal neurons, clear vesicles range in size from 250 to 1000 Å in diameter, but are most frequently 400–500 Å. Vesicles with dense contents (granules) also vary greatly in size, but most are 450–550 Å in diameter and correspond to dense-core vesicles. Large granules that contain acid phosphatase activity are thought to be lysosomes. During limb regeneration, in both the ganglion cells and peripheral nerves, the ratio of dense vesicles to clear vesicles increases. There is a large increase in number of dense granules with a diameter over 800 Å, particularly in the peripheral regenerating fibers. This study shows that regenerating neurons differ from normal in their content of vesicular structures, especially large, membrane-bounded granules.This work was supported by grants from the National Science Foundation (GB 7912) and from the National Cancer Institute (TICA-5055), National Institutes of Health, United States Public Health Service.  相似文献   

13.
Summary. Plant protoplasts are embedded within surrounding cell walls and the cell wall–plasma membrane–cytoskeleton (WMC) structural continuum seems to be crucial for the proper functioning of plant cells. We have utilised the protoplast preparation methodology to study the organisation and the putative components of the WMC continuum. Application of an osmotic agent evoked plasmolysis of the Zea mays root apex cells which appeared to be cell type- and growth stage-specific. Simultaneous use of wall polysaccharide-digesting enzymes selectively severed linkages between the components of the WMC continuum which changed the plasmolytic patterns in various cell types. This was followed by a reorganisation of filamentous actin aimed to reinforce protoplast boundaries and maintain the functioning of intercellular contact sites, especially at the cross walls. Particularly strong effects were evoked by pectin-degrading enzymes. Such treatments demonstrated directly the differentiated composition of various wall domains surrounding individual cells with the pectin-enriched cross walls (synapses), and the cellulose-hemicellulose network dominating the side walls. The same wall-degrading enzymes were used for in vitro digestion of isolated Lupinus albus cell walls followed by the extraction of wall proteins. Selective release of proteins suggested the importance of wall polysaccharide–protein interactions in the maintenance of the functioning and mechanical stability of root cell walls. Correspondence and reprints: Department of Molecular and Cellular Biology, Adam Mickiewicz University, Międzychodzka 5, 60-371 Poznań, Poland.  相似文献   

14.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

15.
Summary The distribution and ultrastructure of serotonin- and dopamine-immunoreactive (5-HTi and DAi) neurones have been investigated in the terminal ganglion of the cricket, Acheta domestica, using a pre-embedding chopper technique. Special attention has been paid to the immunoreactive structures in the neuropil. 5-HTi structures are extensively distributed and densely packed throughout the 5 neuromeres of the terminal ganglion and originate from several interneurones and efferent neurones. In contrast, DAi fibres are distributed sparsely although they extend to all neuromeres of the ganglion and originate from 6 interneurons only. For both 5-HTi and DAi neurones characteristic axonal projections and branching patterns can be distinguished. The 5-HTi axons exhibit rich varicose arborizations, whereas DAi neurones possess fewer varicosities in the neuropil. Electron microscopy shows that 5-HTi varicosities contain small ( 60 nm) and large ( 100 nm) agranular vesicles, and large ( 100 nm) granular vesicles, whereas in DAi varicosities small ( 60 nm) agranular and large ( 100 nm) granular vesicles are seen. Both 5-HTi and DAi varicosities form synaptic contacts. We conclude that both serotonin and dopamine may be used as neurotransmitters in the terminal ganglion of the cricket.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

16.
Comparison of flies bred on vitamine A-poor and vitamine A-rich diets show the latter to exhibit, after blue illumination, 1) slight deviation from the linear relationship between stimulus intensity and receptor sensitivity and, 2) after intense blue illumination the phenomenon of the PDA. Both these effects could result from reduced pigment distances in such membranes. Maximum PDA was produced after about 20 s of illumination with blue light, and following this the resistance of the membrane was seen to stay low, returning to the resting value at the same rate as the PDA decline. The response to test flashes, repressed during illumination, gradually returned during the decline of the PDA, similar to the way the photoreceptor would respond to the sum of two stimuli: the test flash and a decreasing background illumination. Red light immediately following blue abolished the PDA and white light produced a small PDA. All these experiments corroborate a new model (without resorting to the concept of inhibitors) which links the photopigments with receptor excitation, the assumptions for which are the following: 1) PDA is produced after abnormally high primary quantum absorption by rhodopsin molecules, 2) PDA is a retarded membrane excitation by a substance in stored form, 3) the store is built up when production of this substance is larger than its consumption, and 4) time and energy are necessary for the regeneration of excitatory rhodopsin molecules.This work was supported by the DFG (Ha 258/10) and by the SFB 114Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

17.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

18.
19.
Summary Indirect immunofluorescence studies using antisera to synthetic somatostatin, human calcitonin and substance P indicate, in the neural complex of the sea-squirt, Ciona intestinalis L., that these polypeptides are present in large perikarya situated at the periphery of the cerebral ganglion as well as in some smaller perikarya in the medulla. In the medullary and transitional zone, there are nerve fibres that cross-react positively with anti-calcitonin and antisubstance P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号