首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulators of G-protein signaling (RGS) proteins down-regulate signaling by heterotrimeric G-proteins by accelerating GTP hydrolysis on the G alpha subunits. Palmitoylation, the reversible addition of palmitate to cysteine residues, occurs on several RGS proteins and is critical for their activity. For RGS16, mutation of Cys-2 and Cys-12 blocks its incorporation of [3H]palmitate and ability to turn-off Gi and Gq signaling and significantly inhibited its GTPase activating protein activity toward aG alpha subunit fused to the 5-hydroxytryptamine receptor 1A, but did not reduce its plasma membrane localization based on cell fractionation studies and immunoelectron microscopy. Palmitoylation can target proteins, including many signaling proteins, to membrane microdomains, called lipid rafts. A subpopulation of endogenous RGS16 in rat liver membranes and overexpressed RGS16 in COS cells, but not the nonpalmitoylated cysteine mutant of RGS16, localized to lipid rafts. However, disruption of lipid rafts by treatment with methyl-beta-cyclodextrin did not decrease the GTPase activating protein activity of RGS16. The lipid raft fractions were enriched in protein acyltransferase activity, and RGS16 incorporated [3H]palmitate into a peptide fragment containing Cys-98, a highly conserved cysteine within the RGS box. These results suggest that the amino-terminal palmitoylation of an RGS protein promotes its lipid raft targeting that allows palmitoylation of a poorly accessible cysteine residue that we show in the accompanying article (Osterhout, J. L., Waheed, A. A., Hiol, A., Ward, R. J., Davey, P. C., Nini, L., Wang, J., Milligan, G., Jones, T. L. Z., and Druey, K. M. (2003) J. Biol. Chem. 278, 19309-19316) was critical for RGS16 and RGS4 GAP activity.  相似文献   

2.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

3.
Agonists stimulated high-affinity GTPase activity in membranes of HEK293 cells following coexpression of the alpha 2A-adrenoceptor and a pertussis toxin-resistant mutant of Go1 alpha. Enzyme kinetic analysis of Vmax and Km failed to detect regulation of the effect of agonist by a GTPase activating protein. This did occur, however, when cells were also transfected to express RGS4. Both elements of a fusion protein in which the N-terminus of RGS4 was linked to the C-terminal tail of the alpha 2A-adrenoceptor were functional, as it was able to provide concerted stimulation and deactivation of the G protein. By contrast, the alpha 2A-adrenoceptor-RGS4 fusion protein stimulated but did not enhance deactivation of a form of Go1 alpha that is resistant to the effects of regulator of G protein signaling (RGS) proteins. Employing this model system, mutation of Asn128 but not Asn88 eliminated detectable GTPase activating protein activity of RGS4 against Go1 alpha. Mutation of all three cysteine residues that are sites of post-translational acylation in RGS4 also eliminated GTPase activating protein activity but this was not achieved by less concerted mutation of these sites. These studies demonstrate that a fusion protein between a G protein-coupled receptor and an RGS protein is fully functional in providing both enhanced guanine nucleotide exchange and GTP hydrolysis of a coexpressed G protein. They also provide a direct means to assess, in mammalian cells, the effects of mutation of the RGS protein on function in circumstances in which the spatial relationship and orientation of the RGS to its target G protein is defined and maintained.  相似文献   

4.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

5.
Leukemia-associated Rho guanine-nucleotide exchange factor (LARG) belongs to the subfamily of Dbl homology RhoGEF proteins (including p115 RhoGEF and PDZ-RhoGEF) that possess amino-terminal regulator of G protein signaling (RGS) boxes also found within GTPase-accelerating proteins (GAPs) for heterotrimeric G protein alpha subunits. p115 RhoGEF stimulates the intrinsic GTP hydrolysis activity of G alpha 12/13 subunits and acts as an effector for G13-coupled receptors by linking receptor activation to RhoA activation. The presence of RGS box and Dbl homology domains within LARG suggests this protein may also function as a GAP toward specific G alpha subunits and couple G alpha activation to RhoA-mediating signaling pathways. Unlike the RGS box of p115 RhoGEF, the RGS box of LARG interacts not only with G alpha 12 and G alpha 13 but also with G alpha q. In cellular coimmunoprecipitation studies, the LARG RGS box formed stable complexes with the transition state mimetic forms of G alpha q, G alpha 12, and G alpha 13. Expression of the LARG RGS box diminished the transforming activity of oncogenic G protein-coupled receptors (Mas, G2A, and m1-muscarinic cholinergic) coupled to G alpha q and G alpha 13. Activated G alpha q, as well as G alpha 12 and G alpha 13, cooperated with LARG and caused synergistic activation of RhoA, suggesting that all three G alpha subunits stimulate LARG-mediated activation of RhoA. Our findings suggest that the RhoA exchange factor LARG, unlike the related p115 RhoGEF and PDZ-RhoGEF proteins, can serve as an effector for Gq-coupled receptors, mediating their functional linkage to RhoA-dependent signaling pathways.  相似文献   

6.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

7.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

8.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and are thus crucial to the timing of G protein-coupled receptor (GPCR) signaling. Small molecule inhibition of RGS proteins is an attractive therapeutic approach to diseases involving dysregulated GPCR signaling. Methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986) was reported as a selective RGS4 inhibitor, but with an unknown mechanism of action [D.L. Roman, J.N. Talbot, R.A. Roof, R.K. Sunahara, J.R. Traynor, R.R. Neubig, Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay, Mol. Pharmacol. 71 (2007) 169-75]. Here, we describe its mechanism of action as covalent modification of RGS4. Mutant RGS4 proteins devoid of surface-exposed cysteine residues were characterized using surface plasmon resonance and FRET assays of Galpha binding, as well as single-turnover GTP hydrolysis assays of RGS4 GAP activity, demonstrating that cysteine-132 within RGS4 is required for sensitivity to CCG-4986 inhibition. Sensitivity to CCG-4986 can be engendered within RGS8 by replacing the wildtype residue found in this position to cysteine. Mass spectrometry analysis identified a 153-Dalton fragment of CCG-4986 as being covalently attached to the surface-exposed cysteines of the RGS4 RGS domain. We conclude that the mechanism of action of the RGS protein inhibitor CCG-4986 is via covalent modification of Cys-132 of RGS4, likely causing steric hindrance with the all-helical domain of the Galpha substrate.  相似文献   

9.
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.  相似文献   

10.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Galpha subunits and how G protein selectivity is achieved by differences in RGS protein structure are largely unknown. Here we provide evidence indicating that the function of RGS2 is determined in part by differences in potency toward G(q) versus G(i) family members. RGS2 was 5-fold more potent than RGS4 as an inhibitor of G(q)-stimulated phosphoinositide hydrolysis in vivo. In contrast, RGS4 was 8-fold more potent than RGS2 as an inhibitor of G(i)-mediated signaling. RGS2 mutants were identified that display increased potency toward G(i) family members without affecting potency toward G(q). These mutations and the structure of RGS4-G(i)alpha(1) complexes suggest that RGS2-G(i)alpha interaction is unfavorable in part because of the geometry of the switch I binding pocket of RGS2 and a potential interaction between the alpha8-alpha9 loop of RGS2 and alphaA of G(i) class alpha subunits. The results suggest that the function of RGS2 relative to other RGS family members is governed in part by quantitative differences in activity toward different classes of Galpha subunits.  相似文献   

11.
The bifunctional protein RGS14 is both a GTPase activating protein (GAP) for Gialpha and Goalphaand a guanine nucleotide dissociation inhibitor (GDI) for Gialpha. This GDI activity is isolated to a region of the protein distinct from the RGS domain that contains an additional G protein-binding domain (RBD/GL). Here, we report that RGS14 missing its RGS domain (R14-RBD/GL) binds directly to Go and Gi to modulate nucleotide binding and hydrolysis by mechanisms distinct from its defined GDI activity. In brain pull-down assays, full-length RGS14 and R14-RBD/GL (but not the isolated RGS domain of RGS14) bind Goalpha-GDP, Gialpha-GDP, and also Gbetagamma. When reconstituted with M2 muscarinic receptors (M2) plus either Gi or Go, RGS4 (which has no RBD/GL domain) and full-length RGS14 each markedly stimulates the steady-state GTPase activities of both G proteins, whereas R14-RBD/GL has little or no effect. R14-RBD/GL potentiates RGS4 GAP activity in membrane-based assays by increasing the apparent affinity of RGS4 for Gialpha and Goalpha, suggesting a cooperative interaction between the RBD/GL domain, RGS4, and Galpha. This activity of R14-RBD/GL on RGS4 is not apparent in single-turnover solution GAP assays with purified Gialpha or Goalpha, suggesting that membranes and/or receptors are required for this activity. When these findings are taken together, they indicate that regions of RGS14 outside of the RGS domain can bind inactive forms of Go and Gi to confer previously unappreciated activities that influence Galphanucleotide binding and/or hydrolysis by mechanisms distinct from its RGS domain and established GDI activity.  相似文献   

12.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

13.
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.  相似文献   

14.
15.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

16.
RGS proteins (regulators of G protein signaling) attenuate heterotrimeric G protein signaling by functioning as both GTPase-activating proteins (GAPs) and inhibitors of G protein/effector interaction. RGS2 has been shown to regulate Galpha(q)-mediated inositol lipid signaling. Although purified RGS2 blocks PLC-beta activation by the nonhydrolyzable GTP analog guanosine 5'-O-thiophosphate (GTPgammaS), its capacity to regulate inositol lipid signaling under conditions where GTPase-promoted hydrolysis of GTP is operative has not been fully explored. Utilizing the turkey erythrocyte membrane model of inositol lipid signaling, we investigated regulation by RGS2 of both GTP and GTPgammaS-stimulated Galpha(11) signaling. Different inhibitory potencies of RGS2 were observed under conditions assessing its activity as a GAP versus as an effector antagonist; i.e. RGS2 was a 10-20-fold more potent inhibitor of aluminum fluoride and GTP-stimulated PLC-betat activity than of GTPgammaS-promoted PLC-betat activity. We also examined whether RGS2 was regulated by downstream components of the inositol lipid signaling pathway. RGS2 was phosphorylated by PKC in vitro to a stoichiometry of approximately unity by both a mixture of PKC isozymes and individual calcium and phospholipid-dependent PKC isoforms. Moreover, RGS2 was phosphorylated in intact COS7 cells in response to PKC activation by 4beta-phorbol 12beta-myristate 13alpha-acetate and, to a lesser extent, by the P2Y(2) receptor agonist UTP. In vitro phosphorylation of RGS2 by PKC decreased its capacity to attenuate both GTP and GTPgammaS-stimulated PLC-betat activation, with the extent of attenuation correlating with the level of RGS2 phosphorylation. A phosphorylation-dependent inhibition of RGS2 GAP activity was also observed in proteoliposomes reconstituted with purified P2Y(1) receptor and Galpha(q)betagamma. These results identify for the first time a phosphorylation-induced change in the activity of an RGS protein and suggest a mechanism for potentiation of inositol lipid signaling by PKC.  相似文献   

17.
18.
Regulators of G protein signaling (RGS) proteins bind to active G alpha subunits and accelerate the rate of GTP hydrolysis and/or block interaction with effector molecules, thereby decreasing signal duration and strength. RGS proteins are defined by the presence of a conserved 120-residue region termed the RGS domain. Recently, it was shown that the G protein-coupled receptor kinase 2 (GRK2) contains an RGS domain that binds to the active form of G alpha(q). Here, the ability of GRK2 to interact with other members of the G alpha(q) family, G alpha(11), G alpha(14), and G alpha(16), was tested. The signaling of all members of the G alpha(q) family, with the exception of G alpha(16), was inhibited by GRK2. Immunoprecipitation of full-length GRK2 or pull down of GST-GRK2-(45-178) resulted in the detection of G alpha(q), but not G alpha(16), in an activation-dependent manner. Moreover, activated G alpha(16) failed to promote plasma membrane (PM) recruitment of a GRK2-(45-178)-GFP fusion protein. Assays with chimeric G alpha(q)(-)(16) subunits indicated that the C-terminus of G alpha(q) mediates binding to GRK2. Despite showing no interaction with GRK2, G alpha(16) does interact with RGS2, in both inositol phosphate and PM recruitment assays. Thus, GRK2 is the first identified RGS protein that discriminates between members of the G alpha(q) family, while another RGS protein, RGS2, binds to both G alpha(q) and G alpha(16).  相似文献   

19.
Ward RJ  Milligan G 《FEBS letters》1999,462(3):459-463
The quantitative effects of an Asp79Asn mutation in the porcine alpha2A-adrenoceptor on adrenaline-mediated stimulation of the alpha subunit of individual members of the Gi family of G proteins were assessed by measuring GTP turnover number for fusion proteins between the wild type or mutated receptor and pertussis toxin-resistant forms of each of Gi1, Gi2 and Gi3. In each case the receptor mutation limited activation of the G protein to 8-14% of that produced by the wild type receptor. Previous demonstration that in a single cell this mutation selectively interferes with alpha2A-adrenoceptor regulation of distinct effector end points transduced by Gi family members must therefore reflect differential requirements for amplification or the cellular location of individual, co-expressed, G proteins.  相似文献   

20.
The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号