首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A conflict of interest may arise between intra-cellular genomes and their host cell. The example explicitly investigated is that of a 'selfish' mitochondrion which increases its own rate of replication at the cost of reduced metabolic activity which is deleterious to the host cell. The results apply to deleterious cytoplasmic agents in general, such as intracellular parasites. Numerical simulation suggests that selfish mitochondria are able to invade an isogamous sexual population and are capable of reducing its fitness to below 5% of that prior to their invasion. Their spread is enhanced by decreasing the number of mitotic divisions between meioses, and this may constitute a significant constraint on the evolution of lifecycles. The presence of such deleterious cytoplasmic agents favours a nuclear mutation whose expression prevents cytoplasm from the other gamete entering the zygote at fertilization, resulting in uniparental inheritance of cytoplasm. Such a mutation appears physiologically plausible and can increase in frequency despite its deleterious effect in halving the amount of cytoplasm in the zygote. It is suggested that these were the conditions under which anisogamy evolved. These results have implications for the evolution of sexual reproduction. Standard theory suggests there is no immediate cost of sex, a twofold cost being incurred later as anisogamy evolves. The analysis described here predicts a large, rapid reduction in fitness associated with isogamous sexual reproduction, due to the spread of deleterious cytoplasmic agents with fitness only subsequently rising to a maximum twofold cost as uniparental inheritance of cytoplasm and anisogamy evolve.  相似文献   

2.
3.
Chlamydomonas reinhardi, a haploid isogamous green alga, presents a classic case of uniparental inheritance of chloroplast genes. Since the molecular basis of this phenomenon is poorly understood, an examination of the cytology of the C. reinhardi plastid DNA was made in gametes, newly formed zygotes, maturing zygotes, and at zygote germination.The single plastid per cell of Chlamydomonas contains a small number of DNA aggregates (‘nucleoids’) which can be seen after staining with DNA-binding fluorochromes. In zygotes formed by pre-stained gametes, the fluorescing nucleoids disappear from the plastid of mating type minus (male) gamete plastids but not from the plastid of mating type plus (female) gamete plastids about 1 h after zygote formation. Subsequently, nucleoids aggregate slowly to a final average of two or three in the single plastid of the mature zygote.Quantitative microspectrofluorimetry indicates that gametes of both mating types have equal amounts of plastid DNA, and that zoospores arising from zygotes have 3.5 × as much as gametes. Assuming degradation of male plastid DNA, there must be a very major synthesis of plastid DNA between zygote formation and zoospore release when zygotes produce the typical 8–16 zoospores. That synthesis appears to occur at germination, where there is a massive increase in plastid DNA and nucleoid number beginning just prior to meiosis. The results support the theory that uniparental inheritance results from degradation of plastid DNA entering the zygote via the male gamete and suggest further studies, using mutants and altered conditions, which might explain how male plastid DNA sometimes survives.  相似文献   

4.
It has previously been suggested that small sperm size may be an adaptation to achieve uniparental inheritance of organelles, and hence to prevent the spread of selfish cytoplasmic elements. Such an explanation for anisogamy implies a mechanism whereby the male gamete eliminates its own cytoplasm prior to fusion with the egg. A model has been presented demonstrating the invasion and persistence of a modifier that acts gametically to kill its own organelles. Here we show, however, that this model is far from robust; indeed, if any cost is associated with the modifier it cannot persist. We also show that despite an empirically demonstrated association between anisogamy and multicellularity, this result also applies if the analysis is applied in the multicellular case. This class of model contrasts with the majority of analyses in which the modifier kills off the incoming gamete’s organelles. We show that these models are highly robust, even if uniparental inheritance is imperfect.  相似文献   

5.
In most sexually reproducing species, including humans, mitochondria and other cytoplasmic elements are uniparentally (usually maternally) inherited. This phenomenon is of broad interest as a mechanism for countering the proliferation of selfish mitochondria. Uniparental inheritance can be enforced either by the female gametes excluding male cytoplasm or male gametes excluding their own from the zygote. Previous studies have shown that male-enforced uniparental inheritance is unlikely to evolve as a primary mechanism, because unlike female enforcement, the positive linkage disequilibrium between the modifier for eliminating the gamete’s own mitochondria and a wild-type mitochondrial complement is broken from one generation to the next. However, it has been proposed that with a sufficiently high mutation rate and strong selection, elimination of the gamete’s own mitochondria could be favored by selection. In this article, a series of numerical simulations confirm that this is indeed the case, although the conditions where male enforcement is favored are quite restrictive. Specifically, in addition to a high mutation rate to selfish mitochondria and strong selection against them, the cost of uniparental inheritance must be negligible.  相似文献   

6.
In sexual reproductive systems, the number of sexes is generally binary, viz. male and female. Several theoretical studies have shown that the evolution of this system is possibly related to cytoplasmic DNA, including deleterious cytoplasmic symbionts. When organisms are infected by a symbiont that is transmitted vertically to offspring via gametes, the exclusion or degeneration of the latter may evolve as a characteristic of those organisms. If this necessarily results in the elimination of organelle DNA in gametes, a reciprocal preference between individuals, one transmitting organelles and the other not, may be favored. In this theoretical study, factors affecting such an evolutionary process, in which the symbiont is considered as a parasite infecting vertically, horizontally and naturally, are considered. In addition, host individuals are assumed to recover from the infection to some degree. According to the analysis, a binary sex system can evolve only when uninfected and infected host individuals co-exist in a single host population. This condition can be satisfied only if natural infection occurs. Although recovery from infection has both positive and negative effects on binary sex evolution, the latter is promoted only when natural infection exists. Accordingly, if natural infection does not exist, the evolution of binary sex system is unlikely with respect to deleterious cytoplasmic symbionts, in absent of heterozogotic advantage in vertical transmission.  相似文献   

7.
The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Vesicomyidae) depends for its nutrition on sulfur-oxidizing symbiotic bacteria housed in its gill tissues. This symbiont is transmitted vertically between generations via the clam's eggs; however, it remains uncertain whether occasionally symbionts are horizontally transmitted or acquired from the environment. If symbionts are transmitted strictly vertically through the egg cytoplasm, inheritance of symbiont lineages should behave as if coupled to the host's maternally inherited mitochondrial DNA. This coupling would be obscured, however, with low rates of horizontal or environmental transfers, the equivalent of recombination between host lineages. Population genetic analyses of C. magnifica clams and associated symbionts from eastern Pacific hydrothermal vents clearly supported the hypothesis of strictly maternal cotransmission. Host mitochondrial and symbiont DNA sequences were coupled in a clam population that was polymorphic for both genetic markers. These markers were not similarly coupled with sequence variation at a nuclear gene locus, as expected for a randomly mating sexual population. Phylogenetic analysis of the two cytoplasmic genes also revealed no evidence for recombination. The tight association between vesicomyid clams and their vertically transmitted bacterial endosymbionts is phylogenetically very young (<50 million years) and may serve as a model for the origin and evolution of eukaryotic organelles.  相似文献   

8.
The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Vesicomyidae) depends for its nutrition on sulfur-oxidizing symbiotic bacteria housed in its gill tissues. This symbiont is transmitted vertically between generations via the clam's eggs; however, it remains uncertain whether occasionally symbionts are horizontally transmitted or acquired from the environment. If symbionts are transmitted strictly vertically through the egg cytoplasm, inheritance of symbiont lineages should behave as if coupled to the host's maternally inherited mitochondrial DNA. This coupling would be obscured, however, with low rates of horizontal or environmental transfers, the equivalent of recombination between host lineages. Population genetic analyses of C. magnifica clams and associated symbionts from eastern Pacific hydrothermal vents clearly supported the hypothesis of strictly maternal cotransmission. Host mitochondrial and symbiont DNA sequences were coupled in a clam population that was polymorphic for both genetic markers. These markers were not similarly coupled with sequence variation at a nuclear gene locus, as expected for a randomly mating sexual population. Phylogenetic analysis of the two cytoplasmic genes also revealed no evidence for recombination. The tight association between vesicomyid clams and their vertically transmitted bacterial endosymbionts is phylogenetically very young (<50 million years) and may serve as a model for the origin and evolution of eukaryotic organelles.  相似文献   

9.
Pettersson ME  Berg OG 《Genetica》2007,130(2):199-211
Muller’s ratchet, the inevitable accumulation of deleterious mutations in asexual populations, has been proposed as a major factor in genome degradation of obligate symbiont organisms. Essentially, if left unchecked the ratchet will with certainty cause extinction due to the ever increasing mutational load. This paper examines the evolutionary fate of insect symbionts, using mathematical modelling to simulate the accumulation of deleterious mutations. We investigate the effects of a hierarchical two level population structure. Since each host contains its own subpopulation of symbionts, there will be a large number of small symbiont populations linked indirectly via selection on the host level. We show that although the separate subpopulations will accumulate deleterious mutations quickly, the symbiont population as a whole will be protected from extinction by selection acting on the hosts. As a consequence, the extent of genome degradation observed in present day symbionts is more likely to represent loss of functions that were (near-) neutral to the host, rather than a snap shot of a decline towards complete genetic collapse.  相似文献   

10.
G. M. W. Adams 《Plasmid》1978,1(4):522-535
Chloroplast genes in Chlamydomonas reinhardtii are inherited uniparentally. In a laboratory cross the majority (>95%) of the zygotes transmit to the meiotic progeny only those chloroplast genes donated by the maternal parent. This occurs even though the parents are isogamous and the chloroplasts from the two parents fuse shortly after mating. Uniparental inheritance of the chloroplast genes can be altered by several methods. If maternal gametes are irradiated with ultraviolet light prior to mating, the proportion of zygotes transmitting chloroplast genes from the paternal parent rises dramatically. In this paper I examine in detail the effects of uv irradiation on both maternal and paternal gametes and the effect of photore-activation following the uv irradiation. The effect of uv irradiation can be largely reversed by photoreactivation, and both the starting time and the intensity of the photoreactivating light used are found to be critical. Examination of the frequencies of the different zygote types obtained with respect to chloroplast gene transmission following uv treatment of the maternal gametes shows that they fit a hypergeometric distribution, in which choices are made from a population without replacement. By rearranging the basic hypergeometric equation I was able to estimate that the choice is made from a population of 27 maternal and 2 paternal units of gene transmission. These units probably contain more than one genome each, since their number is much lower than the estimated number of genomes per cell. My model explains both the observed distribution of zygote types and the bias in favor of maternal alleles found in the progeny of a biparental zygote, and may have a wider application to other organelle genetic systems. I also suggest that the extreme degree of uniparental inheritance of chloroplast genes in Chlamydomonas found in the laboratory may not be seen in nature.  相似文献   

11.
ULTRASTRUCTURE OF PLASTID INHERITANCE: GREEN ALGAE TO ANGIOSPERMS   总被引:2,自引:0,他引:2  
1. Plastid inheritance in most green algae and land plants is uniparental. In oogamous species, plastids are usually derived from the maternal parent; even when inheritance is biparental, maternal plastids usually predominate. Only a few species of conifer are known to have essentially paternal plastid inheritance. In spite of the overall strong maternal bias, there exists a spectrum of species in which plastid inheritance ranges from purely maternal to predominantly paternal. 2. Factors that influence the pattern of plastid inheritance operate both before (often long before) and after fertilization. For example, several different mechanisms for exclusion of plastids from particular cells, none of which is completely effective on its own, may operate sequentially during both gametogenesis and embryo-genesis. There appears to exist a general trend such that the more highly evolved the organism, the more numerous the mechanisms employed and the earlier they first come into operation. The pattern of plastid inheritance shown by a species represents the efficiency or lack of efficiency of these combined mechanisms. 3. In the newly-formed zygote of many unicellular algae, the plastids from both gametes are present and there is direct competition between them. Often the plastid from one mating type (usually the ‘invading’ male gamete, where this can be identified) quickly degenerates. Species such as Chlamydomonas are unusual in that the plastids from the two gametes fuse. In spite of this, inheritance of plastid DNA is normally uniparental. How this is accomplished remains unclear. In oogamous algae, the paternal plastids which enter the egg cell are frequently fewer in number and smaller in size than those contributed by the female gamete. The reduced contribution of paternal plastids can result from asymmetrical cell division or from differential timing of cell and plastid division during spermatogenesis. 4. In species ranging from unicellular algae to angiosperms, plastids may be partially or completely debarred from particular cells at critical stages during the reproductive cycle. An important factor in this form of plastid elimination is their postioning with respect to the nucleus prior to a cell division. When plastids closely encircle the nucleus, they are usually incorporated equally into the two daughter cells; when the plastids are concentrated at some distance from the nucleus, they are frequently excluded from one daughter cell. 5. Elimination of plastids from a gamete prior to plasmogamy prevents direct competition between the two types of plastid in the zygote or embryo. Perhaps the most effective method of excluding paternal plastids from the egg cell has been achieved by some lower land plants; the plastids migrate to the posterior part of the spermatozoid, and are discarded from there in a discrete vesicle before the egg is reached. 6. Plastid inheritance in conifers appears to be unique. In those species in which the derivation of plastids in the pro-embryo can be determined, it has been found that they come only from the male gamete. Maternal plastids are positively excluded from the pro-embryo and later degenerate. 7. In most angiosperm species plastid inheritance is maternal; in only a few species is it regularly biparental. The first step towards exclusion of paternal plastids often takes place in the uninucleate pollen grain where the plastids may be concentrated at the pole of the cell farthest from the site of the future generative cell. Any plastids that succeed in entering the generative cell may degenerate before the gametes are released from the pollen tube. Even if paternal plastids reach the egg, they are at a disadvantage because they are (a) entering an environment that is essentially alien, and (b) normally present in much smaller numbers than maternal plastids. Later, when the zygote divides, the few paternal plastids may fail to become incorporated in the small terminal cell which gives rise to the embryo proper. 8. There appears to be no consistent evolutionary progression in the use of more efficient mechanisms to influence plastid inheritance; most of the mechanisms associated with exclusion of paternal plastids in angiosperms, for example, can also be found in one or other species of green alga. The primary factors that influence plastid inheritance appear to be (I) direct competition in the zygote between plastids of the two parental types – the principal mechanism operating in isogamous algae, but also operating in some angiosperms; and (2) the divergent evolution of the two types of gamete - on the one hand a small male gamete with a minimum of cytoplasm which is capable of moving (spermatozoid) or being moved (pollen) efficiently, and, on the other hand, a large egg cell with numerous organelles, which is well able to act as ‘host’ for the future zygote. Many of the additional mechanisms that influence the pattern of plastid inheritance seem to be the more or less ‘accidental’ result of other evolutionary events.  相似文献   

12.
Why the DNA‐containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall‐back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.  相似文献   

13.
SYNOPSIS. The photographs illustrate male and female gametes before fertilization, several progressive stages in the entrance of the male gamete into the cytoplasm of the female, cytoplasmic fusion of gametes, loss of extranuclear organelles of male gamete, retention of extranuclear organelles of female gamete, movement of pronucleus of male gamete to that of female, progressive stages in fusion of pronuclei, and the formation of the zygote which possesses the extranuclear organelles of the female gamete. Some abortive attempts at fertilization, resulting from failure of gametes to differentiate, are shown.  相似文献   

14.
The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.  相似文献   

15.
A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.  相似文献   

16.
The ultrastructure of the sexual stages of Plasmodium gallinaceum during gametogenesis, fertilization, and early zygote transformation is described. New observations are made regarding the parasitophorous vacuole (PV) of gametocytes and the process of emergence in male and female gametocytes. Whereas female gametocytes readily disrupted both the PV membrane and host cell plasmalemma during emergence, male gametocytes frequently failed to break down the plasmalemma of the host cell. New observations and hypotheses are presented on the behavior of the male gamete nucleus. Following fertilization, the male nucleus appears to travel through a channel of endoplasmic reticulum in the female gamete before fusing with the female nucleus at a region in which the nuclear envelope is thrown into extensive convoluted folds. Polarization of the zygote nucleus, in association with the appearance of a perinuclear spindle of cytoplasmic microtubules, preceded all other changes in the developing zygote. After nuclear polarization becomes apparent, electron-dense material is deposited beneath the zygote pellicle, and a canopy is formed which eventually extends over the entire apical end of the developing ookinete. As the apical end begins to extend outward, polar rings, micronemes, and subpellicular microtubules become visible in this portion and a “virus-like” inclusion known as a crystalloid is formed in the posterior portion of the zygote. When female gametes are prevented from being fertilized, the cytoplasm at 24 h after gametogenesis is devoid of most of those organelles found in the developing zygote or the mature ookinete. The cell is surrounded only by a single membrane. Although at various points beneath the membrane there are deposits of electron-dense material reminiscent of those deposited in the zygote, no further development of ookinete structures takes place in the unfertilized female gamete.  相似文献   

17.
Peridinium balticum (Pyrrhophyta) exists as a symbiosis between a nonphotosynthetic dinoflagellate host and a chlorophyll c-containing alga. It is hypothesized that P. balticum is an evolutionary link between primitive nonphotosynthetic and advanced photosynthetic dinoflagellates. This study documents pre- and postfertilization events of sexual reproduction in this unusual dinoflagellate for the first time. Light microscopy and TEM observations showed that gametes resemble vegetative cells except in the organization of their chloroplasts. Fusion of gametes occurred in a specific orientation, i.e., apical to sulcal area. The presence of an intact membrane between fusing pairs prior to plasmogamy was suggestive of enzymatic digestion of plates during fertilization. Rupture of this membrane triggers plasmogamy and karyogamy of the host, followed by that of the algal symbiont. A discussion of the cellular processes involved in gamete formation, fertilization, and zygote development is presented. The results of this investigation demonstrate that a synchronous sexual reproduction cycle has evolved for the symbiont and its dinoflagellate host.  相似文献   

18.
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.  相似文献   

19.
Bacterial symbionts that undergo long-term maternal transmission experience elevated fixation of deleterious mutations, resulting in massive loss of genes and changes in gene sequences that appear to limit efficiency of gene products. Potentially, this dwindling of symbiont functionality impacts hosts that depend on these bacteria for nutrition. One evolutionary escape route is the acquisition of a novel symbiont with a robust genome and metabolic capabilities. Such an acquisition has occurred in an ancestor of Philaenus spumarius, the meadow spittlebug (Insecta: Cercopoidea), which has replaced its ancient association with the tiny genome symbiont Zinderia insecticola (Betaproteobacteria) with an association with a symbiont related to Sodalis glossinidius (Gammaproteobacteria). Spittlebugs feed exclusively on xylem sap, a diet that is low both in essential amino acids and in sugar or other substrates for energy production. The new symbiont genome has undergone proliferation of mobile elements resulting in many gene inactivations; nonetheless, it has selectively maintained genes replacing functions of its predecessor for amino-acid biosynthesis. Whereas ancient symbiont partners typically retain perfectly complementary sets of amino-acid biosynthetic pathways, the novel symbiont introduces some redundancy as it retains some pathways also present in the partner symbionts (Sulcia muelleri). Strikingly, the newly acquired Sodalis-like symbiont retains genes underlying efficient routes of energy production, including a complete TCA cycle, potentially relaxing the severe energy limitations of the xylem-feeding hosts. Although evolutionary replacements of ancient symbionts are infrequent, they potentially enable evolutionary and ecological novelty by conferring novel metabolic capabilities to host lineages.  相似文献   

20.
We developed population genetic theory for organelle genes, using an infinite alleles model appropriate for molecular genetic data, and considering the effects of mutation and random drift on the frequencies of selectively neutral alleles. The effects of maternal inheritance and vegetative segregation of organelle genes are dealt with by defining new effective gene numbers, and substituting these for 2N(e) in classical theory of nuclear genes for diploid organisms. We define three different effective gene numbers. The most general is N(lambda), defined as a function of population size, number of organelle genomes per cell, and proportions of genes contributed by male and female gametes to the zygote. In many organisms, vegetative segregation of organelle genomes and intracellular random drift of organelle gene frequencies combine to produce a predominance of homoplasmic cells within individuals in the population. Then, the effective number of organelle genes is N(eo), a simple function of the numbers of males and females and of the maternal and paternal contributions to the zygote. Finally, when the paternal contribution is very small, N( eo) is closely approximated by the number of females, N( f). Then if the sex ratio is 1, the mean time to fixation or loss of new mutations is approximately two times longer for nuclear genes than for organelle genes, and gene diversity is approximately four times greater. The difference between nuclear and organelle genes disappears or is reversed in animals in which males have large harems. The differences between nuclear and organelle gene behavior caused by maternal inheritance and vegetative segregation are generally small and may be overshadowed by differences in mutation rates to neutral alleles. For monoecious organisms, the effective number of organelle genes is approximately equal to the total population size N. We also show that a population can be effectively subdivided for organelle genes at migration rates which result in panmixis for nuclear genes, especially if males migrate more than females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号