首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A variant of laminin has previously been isolated from murine heart and shown to be distinct from laminin purified from a traditional source, the murine Engelbreth-Holm-Swarm (EHS) tumor (Paulsson, M., and Saladin, K. (1989) J. Biol. Chem. 264, 18726-18732). It contains a novel polypeptide chain designated as 300 kDa, which is not found in laminin from the EHS tumor. In the present study, heart laminin was purified from bovine tissue and shown to be structurally and immunochemically closely related to the murine protein. Further, heart laminins were compared with merosin, a laminin-like protein isolated from human placenta (Ehrig, K., Leivo, I., Argraves, W. S., Ruoslahti, E., and Engvall, E. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3264-3268). The 300-kDa chain of bovine heart laminin cross-reacted with the heavy chain of merosin, showing that these polypeptides are closely related, albeit from different species. Heart laminin is more resistant to proteolysis than laminin derived from the EHS tumor. A large fragment could be prepared by digestion with thermolysin, which consisted of an almost intact long arm structure and variably long, residual short arm structures. Analysis of its structure shows that the 300-kDa heavy chain is disulfide-bonded to the B1 and B2 chains in the center of the laminin cross and forms the long arm together with these chains. It thereby replaces the A chain, well known from tumor sources, in the laminin structure.  相似文献   

2.
3.
In vitro synthesis of laminin and entactin polypeptides   总被引:7,自引:0,他引:7  
Total RNA and poly(A+) RNA, isolated from 13.5-day-old mouse embryo parietal endoderm cells and from differentiated F9 teratocarcinoma cells that synthesize laminin and entactin, were translated in the reticulocyte lysate. Antiserum raised against purified and denatured laminin B chains specifically immunoprecipitated from the translation reaction polypeptides of Mr = 205,000, 200,000, and 185,000. Antiserum against the native complex of laminin and entactin also immunoprecipitated these polypeptides, although less efficiently. In addition, this antiserum immunoprecipitated polypeptides of Mr = 300,000, 270,000, and 140,000. Antiserum against purified and denatured entactin immunoprecipitated only the Mr = 140,000 polypeptide. In contrast, no polypeptides were immunoprecipitated from translation reactions programmed with RNA from undifferentiated F9 cells that produce only small amounts of laminin and entactin. The in vitro synthesized polypeptides migrate on NaDodSO4-polyacrylamide gel electrophoresis slower than the respective unglycosylated laminin and entactin chains isolated from cells treated with tunicamycin. Supplementing the reticulocyte lysate with dog pancreas microsomal membranes yields in vitro translation products which co-migrate with the respective glycosylated laminin and entactin chains of control cells. Taken together, these results suggest that the polypeptides described represent in vitro synthesized laminin and entactin chains.  相似文献   

4.
Laminin, a major component of basement membranes, is a large glycoprotein consisting of three disulfide-bonded subunits, A, B1, and B2. We have isolated and sequenced a Drosophila laminin B2 chain cDNA clone that spans 5737 nucleotides. The deduced amino acid sequence predicts that the mature and nonglycosylated polypeptide has a chain length of 1606 residues (Mr = 178,665). This B2 chain contains 100 half-cystine residues, most of which are located in two cysteine-rich domains, and 11 N-X-S or N-X-T sequences which are potential sites of N-linked glycosylation. The predicted secondary structure reveals the presence of six structurally distinct domains, of which two are mainly alpha-helical, two are cysteine-rich with homologous repeats, and two are globular regions. The Drosophila B2 chain is 40.3 and 41.1% identical to the human and mouse B2 chains, respectively, and 29.6, 30.0, and 29.4% identical to the Drosophila, human, and mouse B1 chains, respectively.  相似文献   

5.
C Wu  R Friedman  A E Chung 《Biochemistry》1988,27(24):8780-8787
Antibodies specific for the A, B1, and B2 chains of laminin have been obtained and characterized. Lam V, a rat X mouse monoclonal antibody, was obtained by immunizing Lewis rats with the extracellular matrix derived from the mouse endodermal line M1536-B3. The antibody was shown to recognize a conformation-sensitive epitope present on the A chain of laminin. The antibody exhibited high avidity for native laminin and uncomplexed newly synthesized laminin A chains. cDNA clones in the vector lambda-gt11 containing sequences for the B1 and B2 chains of laminin were shown to synthesize beta-galactosidase fusion proteins in the host cells induced with IPTG. The fusion protein F3 contained amino acid residues 822-1765 of the B1 chain of mouse laminin, and the fusion protein E4 contained 219 amino acids at the carboxyl terminus of the B2 chain of rat laminin. These two fusion proteins were used to obtain rabbit polyclonal antibodies which were characterized for their specificity and ability to immunoprecipitate laminin and the B chains of laminin. The chain-specific antibodies were used to analyze the assembly and processing of laminin in the mouse endodermal cell line M1536-B3. The results indicated that the covalent assembly of the A and B chains of laminin was initiated as early as 3 min after labeling cells. At this time point uncomplexed A chain of laminin could be observed even though there was an excess of B1 and B2 chains. As early as 4 min after labeling monomeric, dimeric, and oligomeric forms of the B chains of laminin were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Three polypeptide chains, A, B1, and B2, have been described for mouse laminin, a basement membrane protein. We studied expression of laminin A, B1, and B2 mRNA in the developing mouse kidney. Induction of kidney mesenchyme differentiation in vitro led to an increased expression of B1 and B2 chain mRNA on day 1 of development. In contrast, expression of A chain mRNA increased on day 2, when epithelial cell polarization begins. Laminin A mRNA and polypeptide were expressed only by epithelia during in vivo development as well. Some polarized cell types producing basement membrane (endothelium, some adult epithelia) lacked the A chain mRNA and polypeptide, although they did express B chains. Laminin with the 400 kd A chain is therefore a transient form appearing at specific sites of kidney morphogenesis, whereas isoforms with a different A chain or without it have a more widespread distribution.  相似文献   

7.
The exon-intron structure of the human laminin B2 chain gene was elucidated from genomic lambda phage clones spanning 2 kilobase pairs (kb) of the 5'-flanking region, 58 kb of the structural gene and 10 kb of the 3'-flanking region. The entire gene was shown to contain 28 exons. The promoter region has no TATA or CAAT boxes whereas it contains five GC boxes and three AP-2-like binding sites. Comparison with the promoter region of the mouse gene revealed six highly conserved sequences of 14 to 42 base pairs in length. Sequencing of the last exon of the gene showed that the 3'-untranslated region of the mRNA can be up to 2797 nucleotides with five AATAAA potential polyadenylation signals. The similarity of the human 3'-untranslated sequence with that of mouse was shown to be 68.8%. The exon-intron structure of the laminin B2 chain gene demonstrated extensive divergence from the human laminin B1 chain gene, which has 34 exons. Only three intron locations are conserved in these two genes. The overall exon profile of the laminin B2 chain gene correlates only marginally with the pattern of structural domains and internal cysteine-rich repeats in the laminin B2 polypeptide chain.  相似文献   

8.
We have obtained cDNA clones coding for the A, B1, and B2 chains of laminin by screening a cDNA library prepared from mouse EHS tumor poly(A)RNA in the lambda gt11 expression vector with polyclonal antibody against denatured laminin. These cDNA clones were used in combination with a cDNA clone coding for the alpha 1 type IV collagen chain to study the regulation of genes for these basement membrane proteins in retinoic acid-induced differentiating mouse F9 teratocarcinoma cells and in various adult murine tissues. The levels of mRNA for the laminin A, B1, and B2 chains and for the alpha 1 type IV collagen chain were increased simultaneously and reached a maximum at almost the same time during the differentiation of F9 cells, suggesting coordinate expression in these cells. The tissue levels of mRNA encoding for the basement membrane components, however, varied considerably. The highest level of the B1 chain mRNA was observed in kidney, whereas, the levels of mRNA for A and B2 chains were highest in heart. Almost the same levels of expression of the alpha 1(IV) collagen mRNA were found in kidney, lung, and heart. The results indicate that the expression of genes for the basement membrane proteins is not coordinately regulated in these tissues. It is thus possible that different subunit structures of the laminin molecule may exist in tissues.  相似文献   

9.
The N terminus of laminin A chain is homologous to the B chains   总被引:4,自引:0,他引:4  
A major proteolytic fragment (E1/E1-4) of the basement membrane protein laminin, comprising the three short arms with some terminal globules missing, was isolated by elastase digestion, and partial protein sequence data were determined for several tryptic peptides. Sequences which corresponded to A-chain structures were used to synthesize oligonucleotides for the construction and screening of a primer-extended cDNA library from mouse PYS-2 cells. A clone of 1.1 kb was obtained and shown by sequencing to correspond to the 5' end of the 10-kb mRNA of the A chain of laminin. The clone contains 77 nucleotides of 5' untranslated sequence and a region coding for 334 amino acids, including a presumptive signal peptide of 24 amino acids. The sequence is 30% homologous to the corresponding N-terminal part of the B1 chain of laminin, suggesting the same structure for both domains. The data present further evidence for a recent structural model which postulates that each of the three laminin polypeptide chains forms a distinct short arm.  相似文献   

10.
A novel acidic glycoprotein, BM-40, with Mr = 40,000, was purified from the basement-membrane-producing mouse EHS tumor and characterized with regard to its unique chemical and antigenic properties. It was obtained from the tumor in a neutral salt-soluble form or as a component requiring extraction with 6M guanidine X HCl. This protein could also be identified in many other tissue extracts and cell and tissue cultures. The most intact form of BM-40 consists of a single polypeptide chain which undergoes limited proteolysis during extraction and purification. BM-40 exists in most tissues in stoichiometric amounts compared to other basement membrane proteins (laminin, nidogen) and is secreted by various teratocarcinoma and epithelial cells. It can be visualized by immunofluorescence in the extracellular matrix of the EHS tumor and Reichert's membrane. Other tissues which contain extractable BM-40 were negative in immunofluorescence.  相似文献   

11.
Two distinct recombinant cDNA clones having homology to mouse laminin B1 have been isolated from an adult chicken eye library by cross-species nucleic acid hybridization. DNA sequence analysis identified one cDNA as the chicken homologue of the prototypic EHS laminin B1 chain. The second recombinant cDNA encodes a portion of a laminin B1-like protein, which is neither the chicken homologue of laminin B1 nor s-laminin, and thus represents a new laminin B1 variant.  相似文献   

12.
Laminin (Mr = 800,000) is a glycoprotein consisting of three chains, A, B1, and B2, and has diverse biological activities. Previously we reported the complete primary structure of the B1 and B2 chains of mouse laminin deduced from cDNA sequence (Sasaki, M., Kohno, K., Kato, S., Martin, G. R., and Yamada, Y. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 935-939; Sasaki, M., and Yamada, Y. (1988) J. Biol. Chem. 262, 17111-17117). Here we describe the isolation, characterization, and sequence of cDNA clones spanning 9,520 bases which encode the entire A chain of mouse laminin. The nucleotide sequence of the clones contains an open reading frame of 3,084 amino acids including 24 amino acids of a signal peptide. The A chain contains some eight distinct domains including alpha-helices, cysteine-rich repeats and globules. There is considerable sequence and structural homology between the A chain and the B1 and B2 chains. However, the A chain has a unique globular structure containing homologous repeats at the carboxyl terminus and constituting one third of the molecular mass of the chain. Furthermore, the A chain contains three globules and three cysteine-rich domains at the amino terminus, whereas the B1 and B2 chains have only two each of such domains. The A chain shows homology to the basement membrane heparan sulfate proteoglycan core protein and the extracellular domain of the Drosophila neurogenic protein Notch. There is an RGD (Arg-Gly-Asp) sequence in one of the cysteine-rich domains of the A chain. This potential cell binding sequence could be active as another adhesion signal in addition to the previously identified cell binding sequence YIGSR (Tyr-Ile-Gly-Ser-Arg) of the B1 chain.  相似文献   

13.
The carbohydrate binding specificity of Mr = 30,000 lectin (CBP30) from baby hamster kidney (BHK) cells has been studied by inhibition of binding of the radiolabeled lectin to asialofetuin-Sepharose using model oligosaccharides and glycopeptides. CBP30 binds type I or II Gal beta(1----3(4))GlcNAc chains but not Gal(beta 1----3)GalNAc. The inhibitory potency of straight chain polylactosamine structures or complex-type branched glycans is increased in proportion to the number of Gal(beta 1----3(4)) units present. Fucosylation or sialylation of terminal galactose residues or further substitution by (alpha 1----3)-linked galactose or N-acetylgalactosamine does not affect binding whereas substitution of the penultimate N-acetylglucosamine residue drastically reduces binding. Thus, blood group A, H type I or H type II structures, shows high affinity whereas Lex, Lea, and Leb structures bind poorly. CBP30 binds to murine Engelbreth-Holm-Swarm (EHS) tumor laminin and human amniotic fluid fibronectin but not human plasma fibronectin. Binding involves polylactosamine glycans as well as tri- and tetraantennary complex-type glycans present in EHS laminin and amniotic fluid fibronectin but absent in plasma fibronectin. Proteolytic fragments of EHS laminin (E1X/Nd, P1, E8, and E3) bind CBP30, but only fragment E8 supports attachment and spreading of BHK cells. BHK cell adhesion to EHS laminin or fragment E8 was not disturbed by CBP30-specific antibodies, but at relatively high concentrations (45 micrograms/ml) CBP30 inhibited spreading and partially attachment of cells on laminin.  相似文献   

14.
The laminin B2 chain has a multidomain structure homologous to the B1 chain   总被引:31,自引:0,他引:31  
Laminin (Mr = 850,000) is a large basement membrane-specific glycoprotein composed of three chains: A, B1, and B2. Previously, we have reported the primary structure of the B1 chain of mouse laminin deduced from sequencing cDNA clones (Sasaki M., Kato, S., Kohno, K., Martin, G. R., and Yamada, Y. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 935-939). Here we report the isolation of overlapping cDNA clones spanning 7642 bases which encode the entire B2 chain. The nucleotide sequence of the clones contains an open reading frame of 4821 bases coding for a protein of 1607 amino acids including 33 amino acids of a presumptive signal peptide. The mRNA for the B2 chain contains 2.5 kilobases of 3'-untranslated region. The deduced amino acid sequence indicates that the B2 chain consists of six distinct domains, including two domains with alpha-helical, coiled-coil structures, two domains with cysteine-rich homologous repeats, and two globular domains. These structural features of the B2 chain are similar to those of the B1 chain. In addition, the amino acid sequences of the B2 and B1 chains demonstrate considerable homology, suggesting that the genes for these two chains arose from a common ancestor.  相似文献   

15.
Differential expression of the laminin A and B chains in chimeric kidneys   总被引:1,自引:0,他引:1  
The expression of laminin in embryonic kidneys growing in ovo is followed with mouse-specific, affinity-purified antibodies against the laminin A and B chains. In mouse kidneys growing on the chicken chorioallantoic membrane, the epithelium and nephrogenic mesenchyme are derived from mouse and the vasculature from chicken chorioallantoic vessels. Hence, with the mouse-specific antibodies, it is possible to analyze the deposition of laminin chains by the nephrogenic tissue, because laminin derived from the chicken vasculature remains unstained. In these chimeras, only the laminin B chain, but not the A chain, is expressed in the undifferentiated nephrogenic mesenchyme. The basement membrane around the ureter bud is labeled by the antibodies against both laminin A and B chains. In the mesenchyme, the laminin A chain appears when the mesenchyme converts into tubules. The results suggest that the laminin A and B chains are synthesized differentially in the embryonic nephrogenic tissue.  相似文献   

16.
Recent studies ascribed some biological actions of cell adhesion and cell outgrowth to the carboxyl-most 1200 amino acids of vertebrate laminin A chains. Here we report a 6.1-kilobase pair nucleotide cDNA sequence encoding 1951 amino acids and the carboxyl end of a Drosophila laminin A chain. It corresponds to the mouse laminin A domains G, I, II, and III, but may represent a different type of laminin A chain. The arrangement of the cysteine-rich repeats of domain III resembles that of B2 chains. However, it has more amino acid identity with a portion of the mouse laminin A chain domain IIIb than with other laminin repeats. Domains I and II are consistent with an interrupted coiled-coil alpha-helical model of the long arm of laminin but are poorly conserved. The G domain contains five subdomains which are individually related to subdomains of vertebrate laminin A chains. The results indicate that laminin G subdomains should be considered individually, rather than merely as parts of a G-globule. A sequence of hydroxyamino acids contributes to a spacer between two of the subdomains. Stretches of hydroxyamino acids may be indicative of junctions between domains of extracellular Drosophila proteins.  相似文献   

17.
One of the major components of basement membranes is the glycoprotein laminin, made up of three disulfide-bonded subunits, the A, B1, and B2 chains. We have isolated and sequenced overlapping mouse laminin B2 chain cDNA clones covering 7562 base pairs. The deduced amino acid sequence predicts that the mature B2 chain consists of 1572 residues, has an unglycosylated molecular weight of 173,541, and possesses 14 potential N-linked glycosylation sites. Analysis of the predicted secondary structure shows the presence of six domains, two rich in alpha-helical structure, two composed of homologous cysteine-rich repeat units, and two globular regions. The organization of the molecule is very similar to that of the mouse laminin B1 chain, and significant sequence homology between the B1 and B2 chains was found in their two cysteine-rich domains and in their amino-terminal globular domains.  相似文献   

18.
We describe the identification of a novel laminin chain. Overlapping clones were isolated from a human fibrosarcoma HT1080 cell cDNA library spanning a total of 5,200 bp. A second set of clones contained an alternative 3' end sequence giving a total of 4,316 bp. The longer sequence contained an open reading frame for a 1,193-residue-long polypeptide. The alternative sequence was shortened at the carboxyl-terminal end coding for a 1,111-residue-long polypeptide. The amino acid sequence contained 21 amino acids of a putative signal peptide and 1,172 residues or alternatively 1,090 residues of a sequence with five distinct domains homologous to domains I-V in laminin chains. Comparison of the amino acid sequences showed that the novel laminin chain is homologous to the laminin B2 chain. However, the structure of the novel laminin chain isolated here differs significantly from that of the B2 chain in that it has no domain VI and domains V, IV, and III are shorter, resulting in a truncated laminin chain. The alternative sequence had a shortened domain I/II. In accordance with the current nomenclature, the chain characterized here is termed B2t. Calculation of possible chain interactions of laminin chains with the B2t chain domain I/II indicated that the B2t chain can replace the B2 chain in some laminin molecules. The gene for the laminin B2t chain (LAMB2T) was localized to chromosome 1q25-q31 in close proximity to the laminin B2 chain gene. Northern analysis showed that the B2t chain is expressed in several human fetal tissues but differently from the laminin B1 and B2 chains. By in situ hybridization expression of the B2t chain was localized to specific epithelial cells in skin, lung, and kidney as opposed to a general epithelial and endothelial cell expression of the laminin B2 chain in the same tissues.  相似文献   

19.
Antisera raised against fusion proteins consisting of murine laminin B1 and B2 subunit sequences fused to the C-terminus of Escherichia coli beta-galactosidase were tested for their subunit specificity on Western blots of deglycosylated murine Engelbreth-Holm-Swarm (EHS) laminin. The antisera raised against B2 subunit sequences (anti-XLB2.1 and anti-XLB2.2) bound only to the EHS laminin B2 subunit. One of the antisera raised against B1 subunit sequences (anti-XLB1.2) was specific for the B1 subunit, whereas two others (anti-XLB1.1 and anti-XLB1.3) cross-reacted with the EHS laminin B2 subunit. Gold-labelled heparin-albumin was shown to bind specifically to the A subunit of deglycosylated EHS laminin on Western blots. These reagents were used to identify the homologous subunits in rat parietal-yolk-sac laminin and human placental laminin. The anti-(fusion protein) antisera identified the B1 and B2 subunits of the rat laminin, and these were similar in size to the murine EHS B subunits. Human placental laminin gave bands of 400, 340, 230, 190 and 180 kDa on reducing SDS/PAGE. The anti-(fusion protein) antisera identified the 230 and 190 kDa bands as the B1 and B2 subunits respectively. Gold-labelled heparin-albumin bound to the 400, 340 and 190 kDa bands of human placental laminin and so did not unambiguously identify a single A subunit. The human placental laminin may contain a mixture of isoforms, with alternative subunits substituting for the A subunit.  相似文献   

20.
The biosynthetic products of the Engelbreth-Holm-Swarm (EHS) tumor and the cell-free translation products of EHS tumor cell RNA were characterized. Six distinct gene products (three laminin polypeptides, entactin/nidogen, and two collagen IV chains) comprising the basement membrane matrix were identified by a combination of proteolytic digestion and immunologic techniques. Analysis of the cell-free translation products using EHS tumor RNA precipitated by anti-laminin serum confirms earlier evidence that there are at least two B chains encoded by different genes. The anti-laminin serum also recognized entactin/nidogen, which was further identified by specific immunoprecipitation with anti-entactin serum. Radiolabeled laminin A chains, synthesized by the EHS tumor in organ culture, were also identified by the anti-laminin serum but were not detected among the cell-free translation products of EHS tumor RNA. Pulse-chase studies of EHS tumor in organ culture as well as in vitro translation of EHS tumor RNA suggest that the precursor forms of alpha 1(IV) and alpha 2(IV) collagen chains are nearly identical in size, with apparent molecular weights of 170,000. The mRNAs encoding these two polypeptides migrate differently on sucrose gradients. It is likely that glycosylation and hydroxylation of collagen IV account for the major differences in molecular weight of mature alpha 1(IV) and alpha 2(IV) chains in the EHS tumor matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号