首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Around 30 years ago, a very prominent molecular biologist confidently proclaimed that nothing of fundamental importance has ever been learned by irradiating cells! The poor man obviously did not know about discoveries such as DNA repair, mutagenesis, connections between mutagenesis and carcinogenesis, genomic instability, transposable genetic elements, cell cycle checkpoints, or lines of evidence historically linking the genetic material with nucleic acids, or origins of the subject of oxidative stress in organisms, to name a few things of fundamental importance learned by irradiating cells that were well known even at that time. Early radiation studies were, quite naturally, phenomenological. They led to the realization that radiations could cause pronounced biological effects. This was followed by an accelerating expansion of investigations of the nature of these radiobiological phenomena, the beginnings of studies aimed toward better understanding the underlying mechanisms, and a better appreciation of the far-reaching implications for biology, and for society in general. Areas of principal importance included acute tissue and tumor responses for applications in medicine, whole-body radiation effects in plants and animals, radiation genetics and cytogenetics, mutagenesis, carcinogenesis, cellular radiation responses including cell reproductive death, cell cycle effects and checkpoint responses, underlying molecular targets leading to biological effects, DNA repair, and the genetic control of radiosensitivity. This review summarizes some of the highlights in these areas, and points to numerous examples where indeed, many things of considerable fundamental importance have been learned by irradiating cells.  相似文献   

2.
Since nucleic acids are organic molecules, even DNA, which carries genetic information, is subjected to various chemical reactions in cells. Alterations of the chemical structure of DNA, which are referred to as DNA damage or DNA lesions, induce mutations in the DNA sequences, which lead to carcinogenesis and cell death, unless they are restored by the repair systems in each organism. Formerly, DNA from bacteria and bacteriophages and DNA fragments treated with UV or gamma radiation, alkylating or crosslinking agents, and other carcinogens were used as damaged DNA for biochemical studies. With these materials, however, it is difficult to understand the detailed mechanisms of mutagenesis and DNA repair. Recent progress in the chemical synthesis of oligonucleotides has enabled us to incorporate a specific lesion at a defined position within any sequence context. This method is especially important for studies on mutagenesis and translesion synthesis, which require highly pure templates, and for the structural biology of repair enzymes, which necessitates large amounts of substrate DNA as well as modified substrate analogs. In this review, the various phosphoramidite building blocks for the synthesis of lesion-containing oligodeoxyribonucleotides are described, and some examples of their applications to molecular and structural biology are presented.  相似文献   

3.

Since nucleic acids are organic molecules, even DNA, which carries genetic information, is subjected to various chemical reactions in cells. Alterations of the chemical structure of DNA, which are referred to as DNA damage or DNA lesions, induce mutations in the DNA sequences, which lead to carcinogenesis and cell death, unless they are restored by the repair systems in each organism. Formerly, DNA from bacteria and bacteriophages and DNA fragments treated with UV or γ radiation, alkylating or crosslinking agents, and other carcinogens were used as damaged DNA for biochemical studies. With these materials, however, it is difficult to understand the detailed mechanisms of mutagenesis and DNA repair. Recent progress in the chemical synthesis of oligonucleotides has enabled us to incorporate a specific lesion at a defined position within any sequence context. This method is especially important for studies on mutagenesis and translesion synthesis, which require highly pure templates, and for the structural biology of repair enzymes, which necessitates large amounts of substrate DNA as well as modified substrate analogs. In this review, the various phosphoramidite building blocks for the synthesis of lesion-containing oligodeoxyribonucleotides are described, and some examples of their applications to molecular and structural biology are presented.  相似文献   

4.
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating “smart” libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.  相似文献   

5.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

6.
The estimation of genetic instability by direct extent of DNA damage and repair is an important aspect of studies on mutagenesis, carcinogenesis, aging and evolution. Different methods have been introduced from time to time in an effort to meet this need. Single cell gel electrophoresis (SCGE) assay is a new, simple and sensitive method of evaluating DNA damage and repair at individual cell level. This assay can be performed on extremely small number of cells and results can be obtained within a relatively short time. The SCGE assay has the potential to play an important role not only in the understanding of some of the fundamental aspects of human biology but also can be helpful in many practical ways. For reprint requests.  相似文献   

7.
Recent in vivo and in vitro data of patients analyzed for genetic susceptibility to radiation during cancer therapy have shown structural changes in the chromosomes to be prevalent both in the patients being treated and in their immediate family members. As structural changes in chromosomes frequently lead to activation of proto-oncogenes and elimination of tumor-suppressor genes, they represent important mechanisms for the initiation of DNA repair processes and tumorigenesis. With the exception of rare genetic syndromes such as AT (Ataxia telangiectasia) or NBS (Nijmegen Breakage Syndrome), the background for the inheritance of genetic susceptibility to radiation is unknown. Recently, a large-scale genetic screen of mouse mutants has been established within the German Human Genome Project (Hrabè de Angelis and Balling 1998). The goal of this ENU (ENU: ethylnitrosourea) mutagenesis screen is the generation of mutant mice that will serve as animal models for human diseases and genetic susceptibility. In order to fully utilize the potential of a genetic screen of this magnitude, in which exploration for genes responsible for genomic instability and radiation sensitivity is to occur, it is necessary to establish a simple assay system that is amenable to automation. Hence, we are using the single-cell gel electrophoresis (comet assay) to detect mouse mutants that display a genetic susceptibility to ionizing radiation. We have established the analysis parameters in the comet assay which are currently used to detect radiation-sensitive mouse mutants and to control the variance within the mouse population in the ENU screen. The assay can be used to isolate genes that are responsible for DNA repair and radiation sensitivity in mouse and human. Received: 16 December 1999 / Accepted: 17 December 1999  相似文献   

8.
Over the past 20 years, directed evolution has been seen to be the most reliable approach to protein engineering. Emulating the natural selection algorithm, ad hoc enzymes with novel features can be tailor-made for practical purposes through iterative rounds of random mutagenesis, DNA recombination and screening. Of the heterologous hosts used in laboratory evolution experiments, the budding yeast Saccharomyces cerevisiae has become the best choice to express eukaryotic proteins with improved properties. S. cerevisiae not only allows mutant enzymes to be secreted but also, it permits a wide range of genetic manipulations to be employed, ranging from in vivo cloning to the creation of greater molecular diversity, thanks to its efficient DNA recombination apparatus. Here, we summarize some successful examples of the use of the S. cerevisiae machinery to accelerate artificial evolution, complementing the traditional in vitro methods to generate tailor-made enzymes.  相似文献   

9.
The nature and mechanisms of formation of spectrum and frequency of gene mutations induced by ionizing radiation of different quality have been the two key interdependent problems in radiation mutagenesis (at the gene level) of higher eukaryotes. The history of both problems, that were first given consideration by N.W.Timofeeff-Ressovsky, a known Russian radiobiologist and evolutionist, has been followed up. The author emphasizes some characteristic features of methodology of those works and shows that negative consequences for the development of the theory of radiation mutagenesis of higher eucaryotes are unavoidable if the study on the problems is carried out with the use of different approaches and test-systems. The joining up of both methods used by N.W.Timofeeff-Ressovsky in various time periods and for different purposes (analysis of the spectrum and frequency of mutations of individual genes, on the one hand, and modification analysis of the processes that lead to these mutations, on the other) and the use of current molecular and genetic methods signifies a qualitatively new stage in studying the above-mentioned problems and the onset of a new scientific orientation, that is, molecular radiobiology of an eukaryote gene.  相似文献   

10.
In the past decades a large number of DNA adducts induced in the intact animal by alkylating agents have been identified. The formation and repair of these adducts are important determinants, not only of mutagenesis, tumor initiation and DNA-mediated toxicity but probably also of tumor progression. Most studies on in vivo DNA modification have been performed on isolated bulk DNA.

More recently, methods have been developed to study the distribution of DNA adducts at the level of either the individual gene or the individual cell. This paper reviews immunocytochemical methods to study the formation and repair of DNA adducts and other DNA modifications at the level of the individual cell. DNA modifications induced by alkylating agents and a variety of other agents including ultraviolet radiation, aromatic amines, polycyclic aromatic hydrocarbons and platinum anti-cancer drugs will be discussed.

Up to now, immunocytochemical analysis of in vivo modified DNA has largely concentrated on experimental animals. These studies have revealed striking heterogeneities with regard to formation and/or repair of DNA adducts in tissues from rat, hamster and mouse. Immunocytochemical adduct analysis can be used to identify in a convenient, fast and detailed way cell types, cell stages and sites in which biological effects of the adducts might be expressed. More recently, immunocytochemical analysis of DNA adducts also proved to be feasible on in situ exposed human samples.

A number of existing and potential applications in the field of chemical carcinogenesis, experimental chemotherapy and molecular epidemiology are discussed.  相似文献   


11.
Glazer VM  Glazunov AV 《Genetika》1999,35(11):1449-1469
DNA double-strand breaks (DSB) are the most dangerous damage to genetic material caused by ionizing radiation and some chemical agents. Nonrestored DSB lead to chromosomal rearrangements, genetic instability, and cell death. On the other hand, DSB normally occur in cells in the course of normal gene functioning. DSB repair not only protects cells from adverse consequences and maintains stability of genetic material but is directly involved in the most important processes of cell life, such as meiosis and humoral immunity in vertebrates. The diverse mechanisms of homologous and nonhomologous recombination underlie DSB repair. In this respect, yeast are the best-studied object. In this review, genetic control and molecular models of the recombination DNA DSB repair in Saccharomyces cerevisiae are considered. Evidence has accumulated that indicates the higher eukaryotes retained the basic set of the repair pathways characteristic of bacteria and lower eukaryotes. However, different repair mechanisms predominate in yeast as compared to higher eukaryotes. Therefore, the results obtained in yeast experiments may be applicable to higher eukaryotes.  相似文献   

12.
The modern conceptions on the molecular mechanisms of Micrococcus radiodurans viability under the action of ionized radiation have been considered. Factors providing a high level of the bacterium radioresistance-the peculiarities of the cell wall structure, membranes, DNA, the redundancy of genetic information, the multiplicity of sites of DNA attachment to the membrane, a high level of antioxidant and antiradical systems-have been analysed. It has been shown that the efficiency of accurate, error-free, well balanced DNA repair system in connection with M. radiodurans properties mentioned provides a high radiation resistance of this microorganism.  相似文献   

13.
E L Ivanov 《Genetika》1991,27(1):5-12
The subject of this review are molecular mechanisms and specificity of mutagenesis induced by apurinic/apyrimidinic (AP) sites representing a characteristic group of so called non-coding DNA lesions. The data available suggest that efficiency and specificity of AP sites-induced mutations depend, primarily, on genome structural organization. This is manifested in existence of DNA sequences highly prone to depurination/depyrimidination as well as in the ability of specific DNA regions to adopt potentially mutagenic conformations. The latter leads to mutations as consequence of AP sites' repair. Secondly, the AP sites-induced mutagenesis depends on functional state of genome, on the ability of replicative/repair cell apparatus to carry out some specific forms of mutagenic DNA repair, in particular, to bypass non-coding DNA lesions under conditions of SOS repair.  相似文献   

14.
DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment.  相似文献   

15.
A new radiation-sensitive mutant, radC , has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for gamma-radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amounts of X- and uv-radiation-induced DNA degradation, and it was approximately 60% deficient in recombination ability. The radC strain was normal for host cell reactivation of gamma-and uv-irradiated bacteriophage lambda; the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, we suggest that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation.  相似文献   

16.
Radiation-induced DNA damage and its repair   总被引:26,自引:0,他引:26  
Application of modern methods of organic chemistry and recombinant DNA technologies has provided new insights in the field of DNA radiation damage and its repair. An overview of the chemical nature of the lesions inflicted on DNA by ionizing radiation is presented. The structures of 29 different DNA modified base or sugar residues are shown in comprehensive formation schemes. A fraction of radiation-induced modified bases is spontaneously released from the DNA chain during irradiation. Another part remains attached to the DNA chain backbone and for its characterization mild formic acid or enzymatic hydrolysis have been used. Starting from the chemical formulae of the altered base residues, the specific repair enzymes and their modes of action are discussed. Various glycosylases and endonucleases have been purified to homogeneity, and in some cases the gene which encodes the protein cloned. Using methods derived from Maxam and Gilbert sequencing procedures and DNA fragment 32P-labelled at one end, it has been shown that the alkali-labile sites in DNA induced by radiation are strongly dependent on the DNA base sequence. Enzymatic methods have been used to analyse the DNA base defects produced by gamma-irradiation of cells under in vivo conditions. Structures of modified bases were the same as those observed when DNA was irradiated in aqueous solution.  相似文献   

17.
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.  相似文献   

18.
Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.  相似文献   

19.
Mukherjee A  Vasquez KM 《Biochimie》2011,93(8):1197-1208
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.  相似文献   

20.
DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号