首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, the odds favoring X-linked dominant versus autosomal dominant inheritance are > 10(5):1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol "RP15."  相似文献   

2.
Summary A hypervariable DNA marker is closely linked to one of the most severe forms of night blindness, X-linked retinitis pigmentosa (RP). Affected individuals with X-linked RP, obligate carriers, and ophthalmologically identifiable carriers of the disease were included in a linkage study. The diagnosis was established in five sibships by funduscopic and electrophysiological investigations. When the X-linked probe M27 was used, 2 recombinants out of 29 informative meioses were detected (=0.07 at a maximum lod of 4.75). The hypervariable probe detected two different alleles in 38 of 39 females tested. M27 is therefore a potentially very useful probe for carrier detection and prenatal diagnosis, as well as for addressing the question of heterogeneity of X-linked RP.  相似文献   

3.
Summary The results of linkage analysis in a family with X-linked retinitis pigmentosa (XLRP) are presented. Probe M27B (DXS255), localised to Xp11.22, was only loosely linked to XLRP, whereas pHOC3 (OTC), in the more distal Xp21.1 region, was tightly linked. In this family, the conditional probability of an RP3 locus (in Xp21.1–p11.4) was found to be 0.978 compared with 0.021 for an RP2 locus (in Xp11.4–p11.2). Risk assessment showed that 2 out of 4 at risk females showing no clinical abnormality have a high probability of being genetic carriers of XLRP. Some affected males have recurrent respiratory infections as a result of a condition indistinguishable from the immotile cilia syndrome; indeed, there is an association between XLRP and susceptibility to respiratory infections in the majority of affected males. The possibility that previously observed ciliary abnormalities in XLRP patients might be associated specifically with an RP3 locus abnormality is discussed.  相似文献   

4.
We present active‐state structures of the G protein‐coupled receptor (GPCRs) rhodopsin carrying the disease‐causing mutation G90D. Mutations of G90 cause either retinitis pigmentosa (RP) or congenital stationary night blindness (CSNB), a milder, non‐progressive form of RP. Our analysis shows that the CSNB‐causing G90D mutation introduces a salt bridge with K296. The mutant thus interferes with the E113Q‐K296 activation switch and the covalent binding of the inverse agonist 11‐cis‐retinal, two interactions that are crucial for the deactivation of rhodopsin. Other mutations, including G90V causing RP, cannot promote similar interactions. We discuss our findings in context of a model in which CSNB is caused by constitutive activation of the visual signalling cascade.  相似文献   

5.
滕云  王慧 《遗传》2002,24(3):356-358
视网膜色素变性(RP)是常见的遗传性眼病,具有高度的遗传异质性,患者常有进行性夜盲和视野缺损。对于常染色体显性遗传RP已经发现有12个基因座与之有关,其中6个致病基因已被克隆,对于这些致病基因的结构、突变及其功能目前已有了新的研究进展。 Abstract:Retinitis pigmentosa (RP) describes a genetically and clinically heterogeneous group of disorders that are characterized by gradual degeneration of photoreceptor cells.Common clinical features include a progressive loss of night vision,leading to night blindness and peripheral-visual-field loss.At least 12 loci have been mapped to chromosomes,and mutations in an ever increasing number of genes have been found to cause autosomal dominant retinitis pigmentosa (ADRP).Six of the 12 genes known to cause ADRP have been cloned.New progress has been made on the studies of structure,mutation and function of these genes.  相似文献   

6.
X-linked forms of retinitis pigmentosa (XLRP) are among the most severe, because of their early onset, often leading to significant vision loss before the 4th decade. Previously, the RP15 locus was assigned to Xp22, by linkage analysis of a single pedigree with "X-linked dominant cone-rod degeneration." After clinical reevaluation of a female in this pedigree identified her as affected, we remapped the disease to a 19.5-cM interval (DXS1219-DXS993) at Xp11.4-p21.1. This new interval overlapped both RP3 (RPGR) and COD1. Sequencing of the previously published exons of RPGR revealed no mutations, but a de novo insertion was detected in the new RPGR exon, ORF15. The identification of an RPGR mutation in a family with a severe form of cone and rod degeneration suggests that RPGR mutations may encompass a broader phenotypic spectrum than has previously been recognized in "typical" retinitis pigmentosa.  相似文献   

7.
X 性连锁视网膜色素变性中的RP G R 基因的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
视网膜色素变性是一组常见的遗传性致盲眼病,患病率约为1/3500。X染色体连锁遗传RP作为其中的一种类型,具有发病早,损害最为严重等特点。而在XLRP的相关基因中RPGR有着重要的意义。本文就RPGR的定位克隆、结构、功能及其突变谱予以综述,并对该基因的突变研究的临床意义作出了相关阐述。  相似文献   

8.
Mutations in the X-linked retinitis pigmentosa 2 gene cause progressive degeneration of photoreceptor cells. The retinitis pigmentosa 2 protein (RP2) is similar in sequence to the tubulin-specific chaperone cofactor C. Together with cofactors D and E, cofactor C stimulates the GTPase activity of native tubulin, a reaction regulated by ADP-ribosylation factor-like 2 protein. Here we show that in the presence of cofactor D, RP2 protein also stimulates the GTPase activity of tubulin. We find that this function is abolished by mutation in an arginine residue that is conserved in both cofactor C and RP2. Notably, mutations that alter this arginine codon cause familial retinitis pigmentosa. Our data imply that this residue acts as an "arginine finger" to trigger the tubulin GTPase activity and suggest that loss of this function in RP2 contributes to retinal degeneration. We also show that in Saccharomyces cerevisiae, both cofactor C and RP2 partially complement the microtubule phenotype resulting from deletion of the cofactor C homolog, demonstrating their functional overlap in vivo. Finally, we find that RP2 interacts with GTP-bound ADP ribosylation factor-like 3 protein, providing a link between RP2 and several retinal-specific proteins, mutations in which also cause retinitis pigmentosa.  相似文献   

9.
The X-linked form of retinitis pigmentosa (XLRP) is a severe disease of the retina, characterised by night blindness and visual field constriction in a degenerative process, culminating with complete loss of sight within the third decade of life. Genetic mapping studies have identified two major loci for XLRP: RP3 (70%–75% of XLRP) and RP2 (20%–25% of XLRP). The RPGR (retinitis pigmentosa GTPase regulator) gene has been cloned within the RP3 genomic interval and it has been shown that 10%–20% of XLRP families have mutations in this gene. Here, we describe a single-strand conformational polymorphism-based mutation screening of RPGR in a pool of 29 XLRP families for which the disease segregates with the RP3 locus, in order to investigate the proportion of RP3 families with RPGR mutations and to relate the results to previous reports. Five different new mutations have been identified: two splice site mutations for exon 1 and three frameshift mutations in exons 7, 10 and 11. The percentage of RPGR mutations identified is 17% (5/29) in our genetically well-defined population. This figure is comparable to the percentage of RP2 gene mutations that we have detected in our entire XLRP patient pool (10%–15%). A correlation of RPGR mutations with phenotype in the families described in this study and the biochemical characterisation of reported mutations may provide insights into the function of the protein. Electronic Publication  相似文献   

10.
Clinical and genetic heterogeneity in retinitis pigmentosa   总被引:14,自引:0,他引:14  
Summary The clinical course of defective vision and blindness has been investigated in relation to different modes of genetic transmission in a large series of 93 families with retinitis pigmentosa (RP). For autosomal dominant RP, two clinical subtypes could be distinguished according to the delay in macular involvement. In the severe form, macular involvement occurred within 10 years, while in the mild form, macular involvement occurred after 20 years. Interestingly, a significant increase of mean paternal age (38.8 years, mean controls in France = 29.1 years, P < 0.001) was found in this form of RP, a feature which is suggestive of new mutations. For autosomal recessive RP, four significantly different clinical subtypes could be recognized, according to both age of onset and the pattern of development (P < 0.001), namely cone-rod dystrophy and early-onset severe forms on the one hand (mean age of onset = 7.6 years), late-onset mild forms and senile forms on the other. Similarly, two significantly different clinical subtypes could be recognized in X-linked RP, according to both mode and age of onset, which were either myopia (mean age = 3.5±0.5 years) or night blindness (mean age = 10.6±4.1 years, P < 0.001). By contrast, no difference was noted regarding the clinical course of the disease, which was remarkably severe whatever the clinical subtype (blindness before 25 years). In addition, all obligate carriers in our series were found to have either severe myopia or pigment deposits in their peripheral retina. Finally, sporadic RP represented the majority of cases in our series (42%). There was a considerable heterogeneity in this group, and at least three clinical forms could be recognized, namely cone-rod dystrophy, early onset-severe forms and late onset moderate forms. At the beginning of the disease, the hereditary nature of the sporadic forms was very difficult to ascertain (especially between 7–10 years) and only the clinical course could possibly provide information regarding the mode of inheritance. However, the high level of consanguinity, and the high sex ratio in early onset and severe sporadic forms (including cone-rod dystrophy), was suggestive of an autosomal or X-linked recessive inheritance, while increased paternal age in late onset forms was suggestive of autosomal dominant mutations.  相似文献   

11.
12.
Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogenous group of disorders, predominantly inherited as an autosomal recessive trait. The disease phenotype is characterised by defective mucociliary clearance of the airways caused by inborn defects of motile respiratory cilia. Randomization of left/right-body symmetry is found in most PCD variants and results from dysfunction of nodal cilia during early embryonic development. Thus ~50% of PCD patients exhibit situs inversus or heterotaxia. To date nine genes encoding either axonemal motor protein components or dynein assembly factors have been identified. In addition, two X-linked syndromic PCD variants associated either with retinitis pigmentosa or mental retardation have been reported. High-speed videomicroscopy (HVM) for ciliary beat evaluation is the most sensitive diagnostic test, since electron microscopy (EM) and immunofluorescence (IF) analyses are not able to detect all PCD variants. Genetic analyses should be targeted once the PCD variant has been characterized in detail by HVM and EM/IF.  相似文献   

13.
Naturally occurring point mutations in the opsin gene cause the retinal diseases retinitis pigmentosa and congenital night blindness. Although these diseases involve similar mutations in very close locations in rhodopsin, their progression is very different, with retinitis pigmentosa being severe and causing retinal degeneration. We report on the expression and characterization of the recently found T94I mutation associated with congenital night blindness, in the second transmembrane helix or rhodopsin, and mutations at the same site. T94I mutant rhodopsin folded properly and was able to bind 11-cis-retinal to form chromophore, but it showed a blue-shifted visible band at 478 nm and reduced molar extinction coefficient. Furthermore, T94I showed dramatically reduced thermal stability, extremely long lived metarhodopsin II intermediate, and highly increased reactivity toward hydroxylamine in the dark, when compared with wild type rhodopsin. The results are consistent with the location of Thr-94 in close proximity to Glu-113 counterion in the vicinity of the Schiff base linkage and suggest a role for this residue in maintaining the correct dark inactive conformation of the receptor. The reported results, together with previously published data on the other two known congenital night blindness mutants, suggest that the molecular mechanism underlying this disease may not be structural misfolding, as proposed for retinitis pigmentosa mutants, but abnormal functioning of the receptor by decreased thermal stability and/or constitutive activity.  相似文献   

14.
Canine X-linked progressive retinal atrophy (XLPRA) is an inherited blinding disorder caused by mutations in the ORF15 of the RPGR gene and homolog to human retinitis pigmentosa 3 (RP3). The disease is observed in 2 variations, XLPRA1 in Siberian husky and samoyed and XLPRA2 derived from mongrel dogs. A third, neutral, deletion has been described in red wolves. Haplotype analysis of the 633-kbp RP3 interval in 6 different canidae confirmed the same decent for the XLPRA1 mutation in both affected breeds but suggests a recent and independent origin for both forms of XLPRA. The RP3 interval was excluded from causative associations with blindness in the red wolf and akita, a breed closely related to Nordic sled dogs. Overall, these data suggest a limited distribution of the affected haplotypes and indicate that mutations in the ORF15 are likely to be limited to the described dog breeds.  相似文献   

15.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

16.
Summary Congenital stationary night blindness is characterized by disturbed or absent night vision that is always present at or shortly after birth and nonprogressive. The X-linked form of the disease (CSNBX; McKusick catalog no. 31050) differs from the autosomal types in that the former is frequently associated with myopia. X-chromosome-specific polymorphic DNA markers were used to carry out linkage analysis in three European families segregating for CSNBX. Close linkage without recombination was found between the disease locus and the anonymous locus DXS7, mapped to Xp11.3, assigning the mutation to the proximal short arm of the X chromosome. Linkage data obtained with markers flanking DXS7 provided further support for this localization of the gene locus. Thus, in addition to retinitis pigmentosa and Norrie disease, CSNBX represents the third well-known hereditary eye disease the locus of which is mapped on the proximal Xp and closely linked to DXS7.  相似文献   

17.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degeneration. This group of disorders essentially leads to blindness due to mutations in different genes. The genetic basis affected by sporadic and inherited autosomal dominant, autosomal recessive or X-linked mutations is complex. In humans, RP is in most cases associated with missense mutations in the rhodopsin gene (RHO). RHO plays an important role in phototransduction pathways. So far, few studies have described associations between chromosomal alterations and RP. In this study, we present a case report of a premature, 32-week-old male baby who suffered from retinopathy, facial dysmorphisms and other disorders. His chromosomes were analyzed by conventional and high-resolution chromosomal techniques. This analysis revealed structural aberrations on chromosomes 3 and 5 with an apparently balanced chromosomal translocation with karyotype 46,XY,t(3;5)(q25;q11.2). Remarkably, the 3q breakpoint on the long arm of chromosome 3 is located close to the physical RHO chromosomal gene location. In this study, we describe presumably for the first time a possible association between a 3q;5q chromosomal alteration and RP. We conclude that the new detected chromosomal translocation may lead either to loss or inactivation of the intragenic RHO gene or its respective gene regulatory region. As a consequence, the chromosomal aberration may be responsible for retinitis pigmentosa.  相似文献   

18.
Employing a modified Goss-Harris irradiation fusion protocol, we have generated a panel of somatic cell hybrids containing various overlapping fragments of the Xcen-Xp11.4 interval. This region of the human X chromosome is known to carry genes for several hereditary eye diseases including retinitis pigmentosa (RP2), congenital stationary night blindness (CSNB-1) and Norrie disease. These hybrid cell lines were employed to isolate 17 new DNA probes by making use of the Alu polymerase chain reaction (PCR) method and subsequent cloning of the PCR products in a plasmid vector. With these probes, we have characterized two previously described microdeletions spanning the Norrie locus; these deletions have enabled us to subdivide the Xp11.4-p11.3 region into three defined intervals.  相似文献   

19.
We determined the mutation spectrum of the RP2 and RPGR genes in patients with X-linked retinitis pigmentosa (XLRP) and searched for correlations between categories of mutation and severity of disease. We screened 187 unrelated male patients for mutations, including 135 with a prior clinical diagnosis of XLRP, 11 with probable XLRP, 30 isolate cases suspected of having XLRP, and 11 with cone-rod degeneration. Mutation screening was performed by single-strand conformation analysis and by sequencing of all RP2 exons and RPGR exons 1-14, ORF15, and 15a. The refractive error, visual acuity, final dark-adapted threshold, visual field area, and 30-Hz cone electroretinogram (ERG) amplitude were measured in each patient. Among the 187 patients, we found 10 mutations in RP2, 2 of which are novel, and 80 mutations in RPGR, 41 of which are novel; 66% of the RPGR mutations were within ORF15. Among the 135 with a prior clinical diagnosis of XLRP, mutations in the RP2 and RPGR genes were found in 9 of 135 (6.7%) and 98 of 135 (72.6%), respectively, for a total of 79% of patients. Patients with RP2 mutations had, on average, lower visual acuity but similar visual field area, final dark-adapted threshold, and 30-Hz ERG amplitude compared with those with RPGR mutations. Among patients with RPGR mutations, those with ORF15 mutations had, on average, a significantly larger visual field area and a borderline larger ERG amplitude than did patients with RPGR mutations in exons 1-14. Among patients with ORF15 mutations, regression analyses showed that the final dark-adapted threshold became lower (i.e., closer to normal) and that the 30-Hz ERG amplitude increased as the length of the wild-type ORF15 amino acid sequence increased. Furthermore, as the length of the abnormal amino acid sequence following ORF15 frameshift mutations increased, the severity of disease increased.  相似文献   

20.
Zinc deficiency and retinitis pigmentosa are both important factors resulting in retinal dysfunction and night blindness. In this study, we address the critical biochemical and structural relevance of zinc ions in rhodopsin and examine whether zinc deficiency can lead to rhodopsin dysfunction. We report the identification of a high-affinity zinc coordination site within the transmembrane domain of rhodopsin, coordinated by the side chains of two highly conserved residues, Glu(122) in transmembrane helix III and His(211) in transmembrane helix V. We also demonstrate that this zinc coordination is critical for rhodopsin folding, 11-cis-retinal binding, and the stability of the chromophore-receptor interaction, defects of which are observed in retinitis pigmentosa. Furthermore, a cluster of retinitis pigmentosa mutations is localized within and around this zinc binding site. Based on these studies, we believe that improvement in zinc binding to rhodopsin at this site within the transmembrane domain may be a pharmacological approach for the treatment of select retinitis pigmentosa mutations. Transmembrane coordination of zinc may also be an important common principle across G-protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号