首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have identified and obtained the full-length clone of RREBP49, a human nuclear factor which specifically interacts with the Rev-responsive element (RRE) sequence of human immunodeficiency virus type 1. Sequence analysis revealed that RREBP49 is highly homologous to hnRNP F protein and contains three repeated RNA-binding domains. Binding assays demonstrated that Rev and RREBP49 bind to different subregions on the RRE sequence and that binding is mutually nonexclusive. Blocking of endogenous RREBP49 expression by an antisense construct increases Rev activity in CV-1 cells, indicating that RREBP49 and Rev may play antagonistic roles in HIV-1 replication. RREBP49 may function as a splicing factor or a nuclear retention factor for unspliced mRNAs. However, only a slight decrease of Rev activity was observed when exogenous RREBP49 was introduced into CV-1 cells by pSVL-RREBP49 expression vector. This may be explained by a high endogenous level of RREBP49 which is above optimal. Alternatively, additional cellular factors may be required for RREBP49-mediated inhibition of Rev.  相似文献   

2.
3.
The constitutive photomorphogenic 1 (COP1) protein of Arabidopsis functions as a molecular switch for the seedling developmental fates: photomorphogenesis under light conditions and skotomorphogenesis in darkness. The COP1 protein contains a cysteine-rich zinc-binding RING finger motif found in diverse groups of regulatory proteins. To understand the role of the COP1 RING finger in mediating protein-protein interaction, we have performed a yeast two-hybrid screen and isolated a novel protein with a RING-H2 motif, a variant type of the RING finger. This protein, designated COP1 Interacting Protein 8 (CIP8), is encoded by a single copy gene and localized to cytosol in a transient assay. In addition to the RING-H2 motif, the predicted protein has a C4 zinc finger, an acidic region, a glycine-rich cluster, and a serine-rich cluster. The COP1 RING finger and the CIP8 RING-H2 domains are sufficient for their interaction with each other both in vitro and in yeast, whereas neither motif displayed significant self-association. Moreover, site-directed mutagenesis studies demonstrated that the expected zinc-binding ligands of the RING finger and RING-H2 fingers are essential for their interaction. Our findings indicate that the RING finger motif, in this case, serves as autonomous protein-protein interaction domain. The allele specific effect of cop1 mutations on the CIP8 protein accumulation in seedlings indicates that its stability in vivo is dependent on the COP1 protein.  相似文献   

4.
5.
6.
The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted α-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding. We generated a series of alanine substitutions across helix 4 of TGMV AL1 and examined their impact on pRBR binding using yeast two-hybrid assays. These experiments showed that several helix 4 residues are essential for efficient pRBR binding, with a critical residue being a leucine at position 148 in the middle of the motif. Various amino acid substitutions at leucine-148 indicated that both structural and side chain components contribute to pRBR binding. The replication proteins of the geminiviruses tomato yellow leaf curl virus and cabbage leaf curl virus (CaLCuV) also bound to pRBR in yeast dihybrid assays. Mutation of the leucine residue in helix 4 of CaLCuV AL1 reduced binding. Together, these results suggest that helix 4 and the conserved leucine residue are part of a pRBR-binding interface in begomovirus replication proteins.  相似文献   

7.
R J Aguilera  S Akira  K Okazaki  H Sakano 《Cell》1987,51(6):909-917
DNA-nuclear protein interactions were studied with synthetic recombination signal sequences (RSSs) for immunoglobulin V-J joining. With a gel retardation assay, a DNA-binding protein that specifically interacts with RSSs was detected in nuclear extracts from a pre-B cell line, 38B9. This protein was found in all the recombination-competent pre-B cell lines tested in this study, but not in myeloma, mature T cell, monocyte, or fibroblast cell lines. DNA footprint analysis with dimethyl sulfate demonstrated that the 7-mer region of the RSS was strongly protected when complexed with the binding protein. Furthermore, a single base substitution in the 7-mer region totally abolished the binding. The molecular mechanism of V-J joining is discussed in the context of the RSS-binding protein.  相似文献   

8.
9.
10.
In this study the interaction of the antimicrobial peptide clavanin A with phosphatidylcholine bilayers is investigated by DSC, NMR, and AFM techniques. It is shown that the peptide interacts strongly and specifically with the lipids, resulting in increased order-disorder phase transition temperatures, phase separation, altered acyl chain and headgroup packing, and a drastically changed surface morphology of the bilayer. These results are interpreted in terms of clavanin-specific interactions with lipids and are discussed in the light of the different mechanisms by which clavanin A can destroy the barrier function of biological membranes.  相似文献   

11.
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.  相似文献   

12.
Chemical cross-linking procedures have been employed to study possible interactions between components of the mitochondrial outer membrane and NH2-terminal signal sequences located in proteins destined for import into the organelle. A synthetic peptide comprising amino acids 1-27 of pre-ornithine carbamyltransferase (pOCT) was found to interact specifically with a mitochondrial polypeptide of apparent molecular size 30 kDa. Membrane fractionation and protease accessibility analyses indicated that the polypeptide, designated p30, is located in the outer membrane. Binding of the synthetic peptide to p30 was saturable and reversible; Scatchard analysis of the binding data revealed a dissociation constant of 2 X 10(-6) M and predicts that p30 constitutes 4-10% of the outer mitochondrial membrane protein. Mild trypsin digestion of the mitochondrial surface destroyed both the ability of p30 to cross-link to the signal peptide and the ability of the organelle to import pOCT. Neither parameter was affected, however, by pretreatment of mitochondria with 1 M KCl.  相似文献   

13.
Using the yeast two-hybrid system, we isolated a cDNA encoding a novel human protein, named Pir51, that strongly interacts with human Rad51 recombinase. Analysis in vitro confirmed the interaction between Rad51 and Pir51. Pir51 mRNA is expressed in a number of human organs, most notably in testis, thymus, colon and small intestine. The Pir51 gene locus was mapped to chromosome 12p13.1-13. 2 by fluorescence in situ hybridization. The Pir51 protein was expressed in Escherichia coli and purified to near homogeneity. Biochemical analysis shows that the Pir51 protein binds both single- and double-stranded DNA, and is capable of aggregating DNA. The protein also binds RNA. The Pir51 protein may represent a new member of the multiprotein complexes postulated to carry out homologous recombination and DNA repair in mammalian cells.  相似文献   

14.
15.
MAGOH interacts with a novel RNA-binding protein   总被引:6,自引:0,他引:6  
Zhao XF  Nowak NJ  Shows TB  Aplan PD 《Genomics》2000,63(1):145-148
MAGOH is the human homologue of Drosophila mago nashi, a protein that is required for normal germ plasm development in the Drosophila embryo. Using human MAGOH as a bait protein in a yeast two-hybrid screen, we recovered four independent cDNA clones that encode different lengths of a novel protein containing a conserved RNA-binding region. This gene, designated RBM8, encodes a 173-aa protein that was shown to have an apparent molecular mass of 26 kDa, as demonstrated by in vitro translation assay. The interaction between MAGOH and RBM8 was demonstrated by both yeast two-hybrid and GST fusion protein pull-down assays. Like MAGOH, RBM8 gene is expressed ubiquitously in human tissues; three species of RBM8 mRNA were detected. Also similar to MAGOH, RBM8 expression is serum inducible in quiescent NIH3T3 fibroblast cells.  相似文献   

16.
The ERM proteins (ezrin, radixin, moesin) together with merlin comprise a subgroup of the band 4.1 superfamily. These proteins act as membrane cytoskeletal linker proteins mediating interactions between the cytoplasmic domains of transmembrane proteins and actin. To better understand how the ERM proteins function to regulate these junctional complexes, a yeast 2-hybrid screen was undertaken using ezrin as a bait. We describe here the identification and cloning of a novel protein, PACE-1, which binds to the C-terminal domain of ezrin. Characterization of PACE-1 in human breast cancer cell lines demonstrates it to have two distinct intracellular localizations. A proportion of the protein is associated with the cytoplasmic face of the Golgi apparatus. This distribution is dependent upon the presence of the PACE-1 N-terminal myristoylation consensus sequence but is not dependent on an association with ezrin. In contrast, PACE-1 colocalises with ezrin in the lamellipodia, where ezrin has a role in cell spreading and motility. A notable feature of PACE-1 is the presence of a putative N-terminal kinase domain; however, in biochemical assays PACE-1 was shown to have associated rather than intrinsic kinase activity. Together these data suggest that PACE-1 may play a role in regulating cell adhesion/migration complexes in migrating cells.  相似文献   

17.
Selective transport of mRNAs in ribonucleoprotein particles (mRNP) ensures asymmetric distribution of information within and among eukaryotic cells. Actin-dependent transport of ASH1 mRNA in yeast represents one of the best-characterized examples of mRNP translocation. Formation of the ASH1 mRNP requires recognition of zip code elements by the RNA binding protein She2p. We determined the X-ray structure of She2p at 1.95 A resolution. She2p is a member of a previously unknown class of nucleic acid binding proteins, composed of a single globular domain with a five alpha helix bundle that forms a symmetric homodimer. After demonstrating potent, dimer-dependent RNA binding in vitro, we mapped the RNA binding surface of She2p to a basic helical hairpin in vitro and in vivo and present a mechanism for mRNA-dependent initiation of ASH1 mRNP complex assembly.  相似文献   

18.
A cDNA clone representing a member of a novel class of cell wall proteins was isolated from tobacco plants. We have designated this protein NtTLRP for tyrosine- and lysine-rich protein. It is structurally related to the previously identified TLRP from tomato plants, sharing a high amino-acid sequence similarity at the C-terminal region. This region contains what appears to be a novel peptide motif which we call CD for cysteine-rich domain, and which is common to several other cell-wall proteins. By using a functional test in transgenic plants, we demonstrate that the presence of the CD domain is per se sufficient to cross-link previously soluble proteins to the cell wall. We present evidence that NtTLRP is cross-linked and specifically localizes to the cell wall of lignified cells. The highly localized deposition of NtTLRP in these cells indicates that this class of cell-wall proteins may have a specialized function in the formation of xylem tissue.  相似文献   

19.
20.
A multiprotein complex that interacts with RNA polymerase II elongator   总被引:1,自引:0,他引:1  
A three-subunit Hap complex that interacts with the RNA polymerase II Elongator was isolated from yeast. Deletions of genes for two Hap subunits, HAP1 and HAP3, confer pGKL killer-insensitive and weak Elongator phenotypes. Preferential interaction of the Hap complex with free rather than RNA polymerase II-associated Elongator suggests a role in the regulation of Elongator activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号