首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm- TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.  相似文献   

3.
High passive stiffness is one of the characteristic properties of the asynchronous indirect flight muscle (IFM) found in many insects like Drosophila. To evaluate the effects of two thick filament protein domains on passive sarcomeric stiffness, and to investigate their correlation with IFM function, we used microfabricated cantilevers and a high resolution imaging system to study the passive IFM myofibril stiffness of two groups of transgenic Drosophila lines. One group (hinge-switch mutants) had a portion of the endogenous S2 hinge region replaced by an embryonic version; the other group (paramyosin mutants) had one or more putative phosphorylation sites near the N-terminus of paramyosin disabled. Both transgenic groups showed severely compromised flight ability. In this study, we found no difference (compared to the control) in passive elastic modulus in the hinge-switch group, but a 15% reduction in the paramyosin mutants. All results were corroborated by muscle fiber mechanics experiments performed on the same lines. The fact that myofibril elasticity is unaffected by hinge switching implies alternative S2 hinges do not critically affect passive sarcomere stiffness. In contrast, the mechanical defects observed upon disrupting paramyosin phosphorylation sites in Drosophila suggests that paramyosin phosphorylation is important for maintaining high passive stiffness in IFM myofibrils, probably by affecting paramyosin's interaction with other sarcomeric proteins.  相似文献   

4.
We examine how the structure and function of indirect flight muscle (IFM) and the entire flight system of Drosophila melanogaster are affected by phosphorylation of the myosin regulatory light chain (MLC2). This integrated study uses site-directed mutagenesis to examine the relationship between removal of the myosin light chain kinase (MLCK) phosphorylation site, in vivo function of the flight system (flight tests, wing kinematics, metabolism, power output), isolated IFM fiber mechanics, MLC2 isoform pattern, and sarcomeric ultrastructure. The MLC2 mutants exhibit graded impairment of flight ability that correlates with a reduction in both IFM and flight system power output and a reduction in the constitutive level of MLC2 phosphorylation. The MLC2 mutants have wild-type IFM sarcomere and cross-bridge structures, ruling out obvious changes in the ultrastructure as the cause of the reduced performance. We describe a viscoelastic model of cross-bridge dynamics based on sinusoidal length perturbation analysis (Nyquist plots) of skinned IFM fibers. The sinusoidal analysis suggests the high power output of Drosophila IFM required for flight results from a phosphorylation-dependent recruitment of power-generating cross-bridges rather than a change in kinetics of the power generating step. The reduction in cross-bridge number appears to affect the way mutant flies generate flight forces of sufficient magnitude to keep them airborne. In two MLC2 mutant strains that exhibit a reduced IFM power output, flies appear to compensate by lowering wingbeat frequency and by elevating wingstroke amplitude (and presumably muscle strain). This behavioral alteration is not seen in another mutant strain in which the power output and estimated number of recruited cross-bridges is similar to that of wild type.  相似文献   

5.
Murine L5178Y cell ribosomes were dissociated into subunits either with potassium chloride in the presence of puromycin or with the chelating agent EDTA. The proteins of ribosomal subunits obtained by these different methods were compared by means of bidimensional polyacrylamide gel electrophoresis. KCl-derived 60S and 40S subunits were shown to contain 38 and 31 proteins respectively, 3 of them having identical electrophoretic mobilities. Preparations of EDTA-dissociated ribosomal subparticles contained different proportions of these proteins, and 11 major spots were shared between the EDTA-derived large and small ribosomal subunits. Furthermore, 10 proteins absent from subunits treated by high concentrations of KCl were reproducibly found in EDTA-treated ribosomal subparticles.  相似文献   

6.
Cultured skin fibroblasts from 16 patients with either French or American pyruvate carboxylase (PC) deficiency were examined for their ability to incorporate 3H-biotin into proteins. Cell extracts were also examined for the presence of biotin-containing proteins with 35S-streptavidin, immunoreactive protein with anti-PC antibody, and PC mRNA by Northern blotting with a PC cDNA probe. All the North American presentation patients showed a 3H-biotin protein, a streptavidin protein, and an anti-PC precipitable protein at 125 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cellular proteins. They also showed a detectable mRNA species for PC on Northern blotting. Of the French presentation patients, five showed very low or absent 3H-biotin protein, streptavidin protein, and anti-PC precipitable protein at 125 kilodaltons. Three French presentation patients showed PC protein to be present on the basis of these techniques. Similarly, five showed either very low or absent mRNA for PC on Northern blotting whereas three gave evidence of the presence of PC-specific mRNA. Thus, whereas the North American presentation of PC deficiency is associated with the presence of a mature biotin containing protein of the correct molecular weight, the French presentation may, in some (but not in all) cases, have both absent PC protein and absent PC mRNA.  相似文献   

7.
A single-site mutation of the flight-muscle-specific actin gene of Drosophila melanogaster causes a substitution of glutamic acid 93 by lysine in all the actin encoded in the indirect flight muscle (IFM). In these Act88FE93K mutants, myofibrillar bundles of thick and thin filaments are present but lack Z-discs and all sarcomeric repeats. Dense filament bundles, which are probably aberrant Z-discs, are seen in myofibrils of pupal flies, but early in adult life these move to the periphery of the fibrils and are not seen in skinned adult fibres. Consistent with this observation, alpha-actinin and other high molecular weight proteins, possibly associated with Z-discs, are not detected on SDS/polyacrylamide gels or Western blots of skinned adult IFM. The mutation lies at the beginning of a loop in the small domain of actin, near the myosin binding region. However, that the mutant actin binds myosin heads is shown by (1) rigor crossbridges in electron micrographs, (2) the appropriate rise in stiffness when ATP is withdrawn in mechanical experiments, and (3) equal protection against tryptic digestion provided by rigor binding between actin and myosin in both wild-type and mutant fibres. Reversal of rigor chevron angle along some thin filaments reflects reversal of thin-filament polarity due to lattice disorder. The absence of Z-discs, alpha-actinin and two high molecular weight proteins, and binding studies by others, suggest that the substitution at residue 93 affects the binding of the mutant actin to a protein, possibly alpha-actinin, which is necessary for Z-disc assembly or maintenance.  相似文献   

8.
In wild-type mycelial cultures of Neurospora crassa under Pi-limited conditions, alkaline phosphatase, cyclic phosphodiesterases I, II, III, and IV, 5'-nucleotidase, acid and alkaline nucleases, RNase N1, and a newly detected endonuclease were secreted into the culture media. These enzymes were either not produced or were produced in very reduced levels in mutants nuc-1, -2, -3, -4, -5, -6, and -7 and cpd-4. The proteins were examined by polyacrylamide gel electrophoresis in a manner which allowed the identification of each of them.  相似文献   

9.
Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and alpha-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM-I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with mu-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms.  相似文献   

10.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch.  相似文献   

11.
The DNA sequences of two wild-type and eleven mutant alleles of the developmental regulator gene brlA from Aspergillus nidulans, which encodes a zinc-finger protein, were characterized. Variant sites were located on rescued plasmids or PCR products based either on their meiotic map position or the use of denaturing gradient gel electrophoresis. Mutations in three null mutants, one of which is partially suppressible, encode premature stop codons. Two environmentally sensitive mutants were characterised by substitution of leucines required for stabilisation of α-helices in each of the two putative zinc-finger domains. A third zinc-finger substitution is predicted to disrupt recognition of a guanine residue in the DNA target. The mutations in four other leaky mutants map C-terminal to the zinc fingers; one minimally leaky mutant has a premature stop codon, which results in the removal of the last 38 residues of the protein product. Received: 16 February 1999 / Accepted: 22 July 1999  相似文献   

12.
Most fishery products consist of muscle tissue from fish and invertebrates. Differences in the molecular structure and in metabolism of muscles can be utilized to characterize and identify various seafood. Creatine and arginine were found to be useful for the differentiation between imitation crab/shrimp meat and real crustacean meat. Octopine served as an indicator for the meat of cephalopods and mussels. In order to identify the animal species of a fishery product, several electrophoretic methods were used. It depended on the type of product, whether sarcoplasmic or myofibrillar proteins were better suited. Raw products were best analysed by isoelectric focusing of sarcoplasmic proteins. Two types of sarcoplasmic calcium-binding proteins, parvalbumins of fish and soluble calcium-binding proteins of invertebrates, were especially useful for species identification. Due to their thermal stability, these proteins gave species-specific patterns for cooked products, too. Two other techniques were also investigated: urea gel isoelectric focusing, and sodium dodecyl sulphate — polyacrylamide gel electrophoresis. These methods were applied in the analysis of products where the sarcoplasmic proteins had been removed by washing steps, i.e. imitation crab meat made from surimi, and of other raw and cooked products. The myosin light chains gave protein patterns that were characteristic for many species. Paramyosin, which is absent from vertebrate muscle, indicated the presence of mollusc muscle. It was shown that the determination, of arginine kinase activity enabled differentiation between raw fish muscle and invertebrate muscles.  相似文献   

13.
Summary Revertants from streptomycin dependence to independence were isolated as single step mutants from six different streptomycin dependent strains. The ribosomal proteins from 100 such mutants were analyzed by two-dimensional polyacrylamide gel electrophoresis and some of them were also examined by immunological techniques. Altered proteins were found in 40 mutants, 24 in protein S4 and 16 in protein S5. No change in any other protein was detected.Altered S5 proteins migrated into five different positions on the polyacrylamide plate and it can be concluded that the mutant proteins differ from the wild type probably by single amino acid replacements. The altered S4 proteins migrated into 17 different positions on the plate. Extensive changes of length, both shorter and longer than wild type S4 protein, are postulated for many of the mutant S4 proteins.Analysis of the ribosomal proteins of four ram mutants revealed altered S4 protein in two of them. The alterations in these mutant proteins are probably very similar to those found in streptomycin independent mutants.Among the revertants there was no apparent correlation between the protein alteration and the particular response to streptomycin.These studies suggest a strong interaction between protein S12, which confers streptomycin dependence, and protein S4 or S5, which can suppress this dependence.Paper No. 60 on Ribosomal Proteins. Preceding paper is by B. Wittmann-Liebold, Hoppe-Seyler's Z. physiol. Chemie, in press.  相似文献   

14.
The chromatophores of Chromatium vinosum, as well as six other photosynthetic bacteria, contained two or more proteins which were insoluble when heated in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME). When the chromatophores were dissolved at room temperature in SDS-beta-ME, these proteins were present in the SDS-polyacrylamide gel electrophoresis profiles, but when the samples were dissolved at 100 degrees C, they were absent or considerably diminished. When one-dimensional gels of chromatophores solubilized at room temperature were soaked in the SDS-beta-ME solution and heated to 100 degrees C and the gels were run in a second dimension, the proteins became immobilized in the original first-dimension gel, where they could be detected by staining. The two major proteins so affected in C. vinosum had apparent molecular weights of 28,000 and 21,000. The chromatophores of several other photosynthetic bacteria also contained predominant proteins between 30,000 and 19,000 molecular weight, which became insoluble when heated in the presence of SDS and beta-ME. In at least two of the species examined, these appeared to be reaction center proteins. The conditions causing the proteins to become insoluble were complex and involved temperature, SDS concentration, and the presence of sulfhydryl reagents. The chromatophores of four of the Chromatiaceae species and two strains of one of the Rhodospirillaceae species examined had a protein-pigment complex that was visible in SDS-polyacrylamide gel profiles of samples dissolved at room temperature but was absent in samples dissolved at 100 degrees C.  相似文献   

15.
Genetic redundancy is a common phenomenon in Arabidopsis and is thought to be responsible for the absence of phenotypes in the majority of single loss-of-function mutants. In this review, we highlight an increasing number of examples in which redundancy between homologous genes is limited or absent despite functional equivalence of the respective proteins. In particular, we focus on cases of unequal redundancy, where the absence of a mutant phenotype in loss-of-function mutants of one gene contrasts with a strong phenotype in mutants of its homolog. In the double mutants, this phenotype is strongly enhanced. Possible explanations for such scenarios are discussed. We propose that the study of unequally redundant gene pairs offers a unique opportunity to understand global patterns of functional genome evolution.  相似文献   

16.
C Yun  B Ely    J Smit 《Journal of bacteriology》1994,176(3):796-803
Caulobacters are stalked bacteria that produce a structure termed a holdfast which enables firm attachment to surfaces. Tn5 insertion mutagenesis was used to identify genes affecting holdfast production or function in the marine strain MCS6. Twelve thousand Tn5 insertion mutants were screened for adhesion defects by an assay involving the attachment of cells to polystyrene microtiter dish wells. Among adhesion-defective mutants, those with multiple polar (pleiotropic) defects were excluded and the remainder were examined for the presence of holdfast. Forty-one mutants that produced no detectable holdfast or a significantly reduced amount were found. Southern blot and pulsed-field gel electrophoresis analyses indicated that 11 unique Tn5 insertions were clustered in three regions of the genome. In addition, 71 mutants that adhered poorly or not at all to polystyrene, yet still produced a holdfast, were found. Southern blot and pulsed-field gel electrophoresis analyses of 15 of these mutants showed eight unique Tn5 insertion sites clustered in two additional regions of the genome. An assay involving attachment to glass treated with siloxane chemicals (producing surfaces with varying degrees of hydrophobicity or hydrophilicity) was used to attempt characterization of this phenotype. Unexpectedly, no simple pattern of differences in binding between the mutants and wild-type caulobacters was found. In particular, no reduction in the ability of the mutants to bind to hydrophobic surfaces was noted. Complementation with cosmid clones was successful in nearly all cases and confirmed the designation of five genomic regions of holdfast-related genes. No detectable cross-hybridization was observed with several holdfast-related gene regions from a freshwater caulobacter, providing further evidence that the marine and freshwater caulobacters are genetically distinct.  相似文献   

17.
The coexistence of two different PII, proteins in Azospirillum brasilense was established by comparing proteins synthesized by the wild-type strain and two null mutants of the characterized glnB gene (encoding PII) adjacent to glnA. Strains were grown under conditions of nitrogen limitation or nitrogen excess. The proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing gel electrophoresis and revealed either by [32P]phosphate or [3H]uracil labeling or by cross-reaction with an anti-A. brasilense PII-antiserum. After SDS-PAGE, a single band of 12.5 kDa revealed by the antiserum in all conditions tested was resolved by isoelectric focusing electrophoresis into two bands in the wild-type strain, one of which was absent in the glnB null mutant strains. The second PII protein, named Pz, was uridylylated under conditions of nitrogen limitation. The amino acid sequence deduced from the nucleotide sequence of the corresponding structural gene, called glnZ, is very similar to that of PII. Null mutants in glnB were impaired in regulation of nitrogen fixation and in their swarming properties but not in glutamine synthetase adenylylation. No glnZ mutant is yet available, but it is clear that PII and Pz are not functionally equivalent, since glnB null mutant strains exhibit phenotypic characters. The two proteins are probably involved in different regulatory steps of the nitrogen metabolism in A. brasilense.  相似文献   

18.
We have developed a novel apparatus, an ergometer, to simultaneously measure the horizontal and vertical components of the work done during takeoff by the fruitfly, Drosophila. We confirm the anatomical prediction that all the work comes from the middle (mesothoracic) legs. With all six legs on the ergometer platform, displacement is directed roughly 45 degrees forwards or backwards. Both directions are equally likely. This provides for a random, rapid horizontal component to the escape behaviour for flies. When the thoracic stiffness is reduced (due to a mutation in which the indirect flight muscles (IFM) do not form myofibrils), jump output is increased. We conclude that the jump muscle, the tergal depressor of trochanter (TDT), which lacks direct muscle antagonists, performs work during the jump against thoracic stiffness. Both cuticle and IFM contribute to the thoracic stiffness as the TDT still produces repeated contractions in the absence of the IFM. Degeneration of the TDT due to mutants in three sarcomeric proteins results in reduction of the jump output. In one of these, the myosin heavy chain mutant, Mhc5, we show that degeneration occurs with age. The anatomical characteristics of Drosophila mean that we are recording, for the first time in the intact fly, the output of a single muscle that has high homology to vertebrate skeletal muscle. Developing an ergometer for Drosophila offers novel opportunities to assess the functional consequences of mutations in muscle proteins, synaptic physiology, neuromuscular development and aging.  相似文献   

19.
邱文  兰咏哲  王迪  黄劲  廖万清  康颖倩 《菌物学报》2019,38(8):1341-1349
新型隐球菌是一种具有荚膜的重要临床致病真菌。本课题组在前期工作中发现CNAG_01032基因可能引起不同来源菌株的表型差异,本研究在此基础上以新型隐球菌临床来源菌株IFM56800(C1)、IFM56769(C2)为背景构建CNAG_01032基因敲除突变体,并检测突变株和野生型菌株经典毒力因子变化情况;使用API 20C AUX测试系统测试突变株和野生型菌株对19种糖的利用情况;使用尾静脉注射法感染BALB/c雌性小鼠进行致病性检测。结果显示:成功构建以临床株C1、C2为背景的CNAG-01032基因敲除突变株;突变株在37℃生长、黑色素产生与野生型菌株无显著差异,但荚膜厚度分别比C1、C2减少16.4%、18.2%;两基因敲除菌株均不能分解利用纤维二糖;致病性与野生型菌株无显著差异。新型隐球菌CNAG_01032基因可能参与临床来源菌株IFM56800、IFM56769的荚膜合成和纤维二糖的代谢。  相似文献   

20.
A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform decrease in recombination, being most pronounced in distal regions, and an increase in first division nondisjunction of all chromosome pairs. Their behavior is consistent with the hypothesis that these mutants are defective in a process which is a precondition for exchange. Two female mutants were allelic and caused a uniform reduction in recombination for all intervals (though to different extents for the two alleles) and an increase in first-division nondisjunction of all chromosomes. Limited recombination data suggest that these mutants do not alter coincidence, and thus, following the arguments of Sandler et al. (1968), are defective in exchange rather than a precondiiton for exchange. A single female mutant behaves in a manner that is consistent with it being a defect in a gene whose functioning is essential for distributive pairing. Three of the female meiotic mutants cause abnormal chromosome behavior at a number of times in meiosis. Thus, nondisjunction at both meiotic divisions is increased, recombinant chromosomes nondisjoin, and there is a polarized alteration in recombination.-The striking differences between the types of control of meiosis in the two sexes is discussed and attention is drawn to the possible similarities between (1) the disjunction functions of exchange and the process specified by the chromosome-specific male mutants; and (2) the prevention of functional aneuploid gamete formation by distributive disjunction and meiotic drive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号