首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational mobility of the lipoyl domain of a number of 2-oxoacid dehydrogenase complexes was investigated by transient dichroism after the domain had been specifically labeled with the triplet probe eosin-5-maleimide. Complexes investigated included pyruvate dehydrogenase complexes from Bacillus stearothermophilus, ox heart, and Escherichia coli (in which the E2 component had been genetically engineered to contain one lipoyl domain) and 2-oxoglutarate dehydrogenase complexes from ox heart and E. coli. Measurements were also performed with ox heart pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes specifically labeled on E1. Anisotropy decays were recorded in glycerol-buffer solutions of varying viscosity and at different temperatures. For E2-labeled complexes, the decays were found to be multiexponential, and the fastest correlation time was considerably shorter than expected for tumbling of the whole complex. This fast correlation time was absent from E1-labeled complexes and was assigned to independent motion of the lipoyl domain. Plots of the fast correlation time against eta/T showed a surprisingly weak dependence on viscosity and extrapolated to a time of 30-40 microseconds at zero viscosity. To explain this result, a model is proposed in which the lipoyl domain is in equilibrium between "free" and bound states. The time of 30-40 microseconds is shown to correspond to 1/koff, where koff is the rate constant for dissociation of the domain from binding sites on the complex. This dissociation phenomenon only contributes to the anisotropy decay when the viscosity of the solution is sufficiently high to slow the tumbling of the whole complex to times that are long in comparison to 1/koff.  相似文献   

2.
The rotational diffusion of erythrocyte spectrin has been measured using time-resolved phosphorescence anisotropy. The anisotropy of the spectrin dimer decays to zero with a time constant of 3 microseconds at 21 degrees C. The results are compared with the correlation times predicted for the anisotropy decay of an equivalent sphere and rigid rod. The data indicate that the ribbon-like spectrin molecule possesses considerable torsional and segmental flexibility. These motions are restricted, but not abolished, when spectrin is reconstituted into cross-linked cytoskeletal protein networks, or bound to spectrin-actin depleted erythrocyte membrane vesicles.  相似文献   

3.
The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms.  相似文献   

4.
Na2SeO3 supplementation in the dialysis medium could obviously prevent the dissociation of spectrin from the erythrocyte membranes. Such Se effect could be eliminated by pretreatment of erythrocyte membranes with a SH-blocking reagent, iodoacetamide(IAA) or addition of a SH-compound, dithio-threitol. The fluorescence intensity of erythrocyte membranes labelled with the fluorescent probe N-(3-pyrenyl)-maleimide decreased with increasing Na2SeO3 concentration used for pretreatment of ghosts. 31P-NMR spectra of erythrocyte membrane dialyzed in the presence or absence of Na2SeO3 concentration showed a difference in chemical shift anisotropy (delta sigma) between these two samples. These data suggest that the stabilization effect is based on changes in lipid-protein interaction and conformation of membrane skeletal components induced by reaction of their SH groups with Na2SeO3.  相似文献   

5.
The oligomeric state of the erythrocyte anion exchange protein, band 3, has been assayed by resonance energy homotransfer. Homotransfer between oligomeric subunits, labeled with eosin-5-maleimide at Lys430 in the transmembrane domain, has been demonstrated by steady-state and time-resolved fluorescence spectroscopy, and is readily observed by its depolarization of the eosin fluorescence. Polarized fluorescence measurements of HPLC-purified band 3 oligomers indicate that eosin homotransfer increases progressively with increasing species size. This shows that homotransfer also occurs between labeled band 3 dimers as well as within the dimers, making fluorescence anisotropy measurements sensitive to band 3 self-association. Treatment of ghost membranes with either Zn2+ or melittin, agents that cluster band 3, significantly decreases the anisotropy as a result of the increased homotransfer within the band 3 clusters. By comparison with the anisotropy of species of known oligomeric state, the anisotropy of erythrocyte ghost membranes at 37 degrees C is consistent with dimeric and/or tetrameric band 3, and does not require postulation of a fraction of large clusters. Proteolytic removal of the cytoplasmic domain of band 3, which significantly increases the rotational mobility of the transmembrane domain, does not affect its oligomeric state, as reported by eosin homotransfer. These results support a model in which interaction with the membrane skeleton restricts the mobility of band 3 without significantly altering its self-association state.  相似文献   

6.
Isolated human erythrocyte spectrin, ankyrin, and protein 4.1 have been labeled with the maleimide spin label, 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl, and studied by saturation transfer electron paramagnetic resonance spectroscopy. The presence of the labels does not affect the reassociation of these proteins with erythrocyte membranes selectively depleted of either spectrin-actin or of all the extrinsic proteins. When maleimide spin-labeled spectrin is reassociated with the erythrocyte membrane in presence of all the cytoskeleton components, including endogeneous or purified muscle actin, spectrin still preserves its flexible character. The rotational mobilities of maleimide spin-labeled ankyrin and maleimide spin-labeled protein 4.1 are of the same order of magnitude (tau c (L"/L) approximately 5 X 10(-5) and 8 X 10(-5) s, respectively, at 2 degrees C), while protein 4.1 is almost three times smaller in size than ankyrin. This result indicates that the movements of membrane-bound maleimide spin-labeled protein 4.1 are more restricted than those of ankyrin. This suggests that their respective binding sites have different structural properties. The rotational movements of both proteins are slowed down on the addition of spectrin indicating that protein 4.1 as well as ankyrin also represents one of the links of the cytoskeleton to the membrane.  相似文献   

7.
Submitochondrial particles were labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide. On sodium dodecyl sulfate-polyacrylamide gels, eosin fluorescence occurred in a single band of Mr approximately 30,000. The labeled band was identified as the ADP/ATP translocator, since EMA binding was completely inhibited by carboxyatractylate. Furthermore, the EMA-labeled polypeptide had the same molecular weight as the purified carboxyatractylate-bound translocator and the purified EMA-labeled translocator. Rotational diffusion of the translocator around the membrane normal in submitochondrial particles was measured by observing flash-induced absorption anisotropy of EMA. The translocator rotates with a time constant which varied from approximately 240 microseconds at 5 degrees C to approximately 100 microseconds at 37 degrees C. However, it is likely that only a fraction of the translocator rotates, the remainder being immobile over the measurement time of 500 microseconds. The mobile fraction of the translocator decreased with decrease in temperature. The observed fluorescence anisotropy of 0.24 indicates that EMA undergoes subnanosecond rapid wobbling in the binding site of the ADP/ATP translocator.  相似文献   

8.
Human erythrocyte band 3 was covalently labeled within the integral membrane domain by incubating intact erythrocytes with the phosphorescent probe eosinyl-5-maleimide. The rotational diffusion of band 3 in membranes prepared from these labeled cells was measured using the technique of time-resolved phosphorescence anisotropy. Three rotational correlation times ranging from 16 to 3800 microseconds were observed, suggesting that band 3 exists in different aggregate states within the plane of the membrane. The oxidizing agent phenylhydrazine was used to induce hemichrome formation within intact erythrocytes. The immobilization of band 3 in membranes prepared from these erythrocytes suggests that the binding of hemichromes induces clustering of band 3. The addition of purified hemichromes to erythrocyte ghosts leads to a similar effect. We have also examined the mobility of the cytoplasmic domain of band 3. This region was labeled indirectly using a phosphorescently labeled antibody which binds to an epitope within the cytoplasmic domain. We observed very rapid motion of the cytoplasmic region of band 3, which was only partially restricted upon hemichrome binding. This suggests that the integral and cytoplasmic domains of band 3 may be independently mobile.  相似文献   

9.
Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy. Using eosin attached to the SH-1 thiol of the myosin head differing rotational modes of the bound probe were detected, dependent upon excitation wavelength. The main features of the anisotropy data for eosin-myosin are consistent with the existence of a 'crevice' or 'pocket' in the myosin head. A model is presented which allows estimation of the ratio of distinct rotational diffusion terms (selected by different excitation wavelengths) that produce both the observed steady-state anisotropy and differential phase results.  相似文献   

10.
We have studied submicrosecond and microsecond rotational motions within the contractile protein myosin by observing the time-resolved anisotropy of both absorption and emission from the long-lived triplet state of eosin-5-iodoacetamide covalently bound to a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation, extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to sulfhydryl-1 (SH1) on the myosin head. In a solution of labeled subfragment-1 (S-1) at 4 degrees C, absorption anisotropy at 0.1 microseconds after a laser pulse is about 0.27. This anisotropy decays exponentially with a rotational correlation time of 210 ns, in good agreement with the theoretical prediction for end-over-end tumbling of S-1, and with times determined previously by fluorescence and electron paramagnetic resonance. In aqueous glycerol solutions, this correlation time is proportional to viscosity/temperature in the microsecond time range. Furthermore, binding to actin greatly restricts probe motion. Thus the bound eosin is a reliable probe of myosin-head rotational motion in the submicrosecond and microsecond time ranges. Our submicrosecond data for myosin monomers (correlation time 400 ns) also agree with previous results using other techniques, but we also detect a previously unresolvable slower decay component (correlation time 2.6 microseconds), indicating that the faster motions are restricted in amplitude. This restriction is not consistent with the commonly accepted free-swivel model of S-1 attachment in myosin. In synthetic thick filaments of myosin, both fast (700 ns) and slow (5 microseconds) components of anisotropy decay are observed. In contrast to the data for monomers, the anisotropy of filaments has a substantial residual component (26% of the initial anisotropy) that does not decay to zero even at times as long as 50 microseconds, implying significant restriction in overall rotational amplitude. This result is consistent with motion restricted to a cone half-angle of about 50 degrees. The combined results are consistent with a model in which myosin has two principal sites of segmental flexibility, one giving rise to submicrosecond motions (possibly corresponding to the junction between S-1 and S-2) and the other giving rise to microsecond motions (possibly corresponding to the junction between S-2 and light meromyosin).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Temperature transitions of spectrin in solution and in human erythrocyte membranes are recorded in the region t greater than 40 degrees C by irreversible changes in protein fluorescence spectra. Structural changes are completed 20 min after the sample incubation at an increased temperature. Both for isolated spectrin and for erythrocyte ghosts the temperature of half-transition is 46 +/- 1 degree C. There is no transition in the membranes after the removal of spectrin. Transitions in erythrocyte ghosts and in spectrin solution disappear at pH 5 when spectrin is in an aggregated state. Spectrin is suggested to be responsible for the transitions at 50 degrees C; its state in the cells areas more thermostable than in isolated membranes.  相似文献   

12.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

13.
Actin was isolated from erythrocyte ghosts. It is identical to muscle actin in its molecular weight, net charge, ability to polymerize into filaments with the double helical morphology, and its decoration with heavy meromyosin (HMM). when erythrocyte ghosts are incubated in 0.1 mM EDTA, actin and spectrin are solubilized. Spectrin has a larger molecular weight than muscle myosin. When salt is added to the EDTA extract, a branching filamentous polymer is formed. However, when muscle actin and the EDTA extract are mixed together in the presence of salt, the viscosity achieved is less than the viscosity of the solution if spectrin is omitted. Thus, spectrin seems to inhibit the polymerization of actin. If the actin is already polymerized, the addition of spectrin increases the viscosity of the solution, presumably by cross-linking the actin filaments. The addition of HMM of trypsin to erythrocyte ghosts results in filament formation in situ. These agents apparently act by detaching erythrocyte actin from spectrin, thereby allowing the polmerization of one or both proteins to occur. Since filaments are not present in untreated erythrocyte ghosts, we conclude that erythrocyte actin and spectrin associate to form an anastomosing network beneath the erythrocyte membrane. This network presumably functions in restricting the lateral movement of membrane-penetrating particles.  相似文献   

14.
Cholesterol dynamics in membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased by the presence of PE. Both steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in three biological membranes: bovine rod outer segment (ROS) disk membranes, human erythrocyte plasma membranes, and light rabbit muscle sarcoplasmic reticulum membranes. In the ROS disk membranes the value for S perpendicular was marginally higher than in the PC membranes, perhaps reflecting the influence of PE. The dramatic difference noted was in the value for tau perpendicular. In both the ROS disk membranes and the erythrocyte membranes, tau perpendicular was one-third to one-fifth of tau perpendicular in the phospholipid bilayers. This result may reveal an influence of membrane proteins on sterol behavior.  相似文献   

15.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

16.
Fluorescence polarization has been used to probe the exposure of tryptophan residues of erythrocyte spectrin. A significant decrease in anisotropy occurred when spectrin was heated at temperatures ranging from 38 to 48 degrees C. At low concentrations of urea, these anisotropy changes shifted to lower temperatures and were minimal in concentrations of urea 3 M or greater. These findings were attributed to the stepwise unfolding of the subdomain structure of spectrin under these conditions and eventual dissociation of oligomeric spectrin to the monomer state. DEAE-cellulose column chromatography in the presence of 3 M urea confirmed this prediction and permitted isolation of pure alpha and beta subunits of spectrin in good yields. The isolated subunits were soluble in neutral salt solutions and were readily reconstituted into high molecular weight forms that displayed "native" tryptophan fluorescence anisotropy changes and migrated as discrete oligomeric species when analyzed by nondenaturing acrylamide gel electrophoresis. The reconstituted complexes were indistinguishable from native spectrin molecules when examined by low angle shadowing and electron microscopy.  相似文献   

17.
Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[14C]ethanolamine ([14C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [14C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric ghosts, suggesting that its relationship with the bilayer is normal in these lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.  相似文献   

18.
The viscosity and the order in the interior of human erythrocyte membranes were investigated by the fluorescence depolarization technique in the nanosecond region with 1,6-diphenyl-1,3,5-hexatriene (DPH). After pulsed excitation with a polarized light, the fluorescence anisotropy ratio of DPH in membranes rapidly decreased and gave a final value (r infinity). The rate of initial decrease and the value of r infinity related to the viscosity in the interior of the membranes and a wobbling angle of DPH which reflects a size of range for the phospholipid motion relating to the order of membrane structure. For normal human erythrocyte membranes the viscosity and the wobbling angle were obtained to be 0.82 poise and 42 degrees, at 37 degrees C. Similar values were obtained for spectrin-free membranes. Hardened membranes by the cross-linking of the cytoskeletal proteins with glutaraldehyde showed a small wobbling angle of 37 degrees, but the viscosity of them was unchanged.  相似文献   

19.
A low-salt extract prepared from human erythrocyte membranes forms a solid gel when purified rabbit muscle G- or F-actin is added to it to give a concentration of approximately 1 mg/ml. This extract contains spectrin, actin, band 4.1, band 4.9, hemoglobin, and several minor components. Pellets obtained by centrifugation of the gelled material at 43,000 g for 10 min contain spectrin, actin, band 4.1, and band 4.9. Although extracts that are diluted severalfold do not gel when actin is added to them, the viscosity of the mixtures increases dramatically over that of G-actin alone, extract alone, or F-actin alone at equivalent concentrations. Heat-denatured extract is completely inactive. Under conditions of physiological ionic strength and pH, information of this supramolecular structure is inhibited by raising the free calcium ion concentration to micromolar levels. Low-salt extracts prepared by initial extraction at 37 degrees C (and stored at 0 degree C) gel after actin is added to them only when warmed, whereas extracts prepared by extraction at 0 degree C are active on ice as well as after warming. Preincubation of the 37 degrees C low-salt extract under conditions that favor conversion of spectrin dimer to tetramer greatly enhances gelation activity at 0 degree C. Conversely, preincubation of the 0 degree C low-salt extract under conditions that favor conversion of spectrin tetramer to dimer greatly diminishes gelation activity at 0 degree C. Spectrin dimers or tetramers are purified from the 37 dgrees or 0 degree C low-salt extract by gel filtration at 4 degrees C over Sepharose 4B. The addition of actin to either purified spectrin dimer (at 32 degrees C) or tetramer (at 0 degree C or 32 degrees C) results in relatively small increases in viscosity, whereas the addition of actin to a high-molecular-weight complex (HMW complex) containing spectrin, actin, band 4.1, and band 4.9 results in dramatic, calcium-sensitive increases in viscosity. These viscosities are comparable to those obtained with the 37 degrees or 0 degree C low-salt extracts. The addition of purified band 4.1 to either purified spectrin dimer (at 32 degrees C) or purified spectrin tetramer (at 0 degree C) plus actin results in large increases in viscosity similar to those observed for the HMW complex and the crude extract, which is in agreement with a recent report by E. Ungewickell, P. M. Bennett, R. Calvert, V. Ohanian, and W. B. Gratzer. 1979 Nature (Lond.) 280:811-814. We suggest that this spectrin-actin-band 4.1 gel represents a major structural component of the erythrocyte cytoskeleton.  相似文献   

20.
Human plasma contains naturally occurring autoantibodies to the predominant components of the erythrocyte membrane: band 3 and spectrin bands 1 and 2 of the cytoskeleton. The titer of cytoskeletal plasma autoantibodies increases in various hemolytic conditions, suggesting that opsonization of the cytoskeleton may play an important role in the clearance of hemolyzed (not senescent) erythrocytes from the circulation. In this study, we use Alexa Fluor 488 goat anti-human IgG conjugate (Molecular Probes, Eugene, OR, USA), to characterize plasma immunoglobulin binding to erythrocyte membranes from osmotically hemolyzed cells ('ghosts'). The results show that exposure of ghosts to plasma results in 4-fold more immunoglobulin binding to the cytoskeleton than is bound to the proteins contained within the lipid bilayer. Preincubation of the ghosts at 37 degrees C causes 8-fold more immunoglobulin binding to the cytoskeleton compared to bilayer proteins. This temperature-induced change resulted from selective immunoglobulin binding to the cytoskeleton, with no change in immunoglobulin binding to bilayer proteins. However, the rate of increase in cytoskeletal antigenicity at 37 degrees C did correlate with the rate of a conformational change in band 3, a transmembrane protein which serves as a major membrane attachment site for the cytoskeleton. The results of this study suggest that the cytoskeleton is the primary target in the opsonization of hemolyzed erythrocyte membranes by naturally occurring plasma autoantibodies. The conformational changes which occur in ghosts at 37 degrees C are associated with selective exposure of new immunoglobulin binding sites on the cytoskeleton, and with a change in the structure of band 3. We propose a model suggesting that opsonization of the cytoskeleton occurs prior to the decomposition of hemolyzed erythrocytes at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号