首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atherosclerosis is a disorder of lipid metabolism as well as a chronic inflammatory disease. Cyclooxygenase-2 (COX-2), an inducible isoform responsible for high levels of prostaglandin production during inflammation and immune responses, mediates a variety of biological actions involved in vascular pathophysiology. We have previously shown that COX-2 gene expression is dramatically induced by a lipid-derived endogenous electrophile, 4-hydroxy-2-nonenal (HNE) (Kumagai, T., Matsukawa, N., Kaneko, Y., Kusumi, Y., Mitsumata, M., and Uchida, K. (2004) J. Biol. Chem. 279, 48389-48396). In the present study, based on the finding that HNE induced COX-2 expression only in the serum-containing media, we characterized a serum component essential for the HNE-induced COX-2 induction and found that low density lipoprotein (LDL) that had been denatured by freeze-thawing or oxidized LDL might be involved in the COX-2 induction. Moreover, we characterized the cellular events triggered by the combined stimulus of HNE and oxidized LDL and established that COX-2 induction is regulated by two sets of signaling mechanisms, one for the up-regulation of the scavenger receptor CD36 by HNE and one for the CD36-mediated COX induction by oxidized LDL. These findings represent a demonstration of a link between lipoprotein modification and activation of the inflammatory potential of macrophages.  相似文献   

2.
Oxidatively modified autoantigens in autoimmune diseases   总被引:4,自引:0,他引:4  
Free radical-mediated oxidative damage and consequent protein modification by the end products of oxidative damage are important mediators of cell toxicity and disease pathogenesis. Aldehydic products, mainly the 4-hydroxy-2-alkenals, form adducts with proteins and make them highly immunogenic. Oxidative modification of proteins has been shown to elicit antibodies in a variety of diseases including systemic lupus erythematosus (SLE), alcoholic liver disease, diabetes mellitus (DM), and rheumatoid arthritis (RA). Oxidatively modified DNA (8-oxodeoxyguanine) and low-density lipoproteins (LDL) occur in SLE, a disease in which premature atherosclerosis is a serious problem. In addition, immunization with 4-hydroxy-2-nonenal (HNE)-modified 60-kDa Ro autoantigen elicits an accelerated epitope spreading in an animal model of SLE. Advanced glycation end product (AGE) pentosidine and AGE-modified IgG have been shown to correlate with RA disease activity. Oxidatively modified glutamic acid decarboxylase is important in type 1 DM, while autoantibodies against oxidized LDL are prevalent in Behcet's disease. The fragmentation of scleroderma-specific autoantigens occurs as a result of oxidative modification and is thought to be responsible for the production of autoantibodies through the release of cryptic epitopes. In the face of overwhelming evidence for the involvement of oxidative damage in autoimmunity the administration of antioxidants is a viable untried alternative for preventing or ameliorating autoimmune disease, although results in cardiovascular disease are disappointing.  相似文献   

3.
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.  相似文献   

4.
Histidine and lysine as targets of oxidative modification   总被引:4,自引:0,他引:4  
Uchida K 《Amino acids》2003,25(3-4):249-257
Summary. Histidine and lysine are two representative targets of oxidative modifications. Histidine is extremely sensitive to a metal-catalyzed oxidation, generating 2-oxo-histidine and its ring-ruptured products, whereas the oxidation of lysine generates carbonyl products, such as aminoadipic semialdehyde. On the other hand, both histidine and lysine are nucleophilic amino acids and therefore vulnerable to modification by lipid peroxidation-derived electrophiles, such as 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes, derived from lipid peroxidation. Histidine shows specific reactivity toward 2-alkenals and 4-hydroxy-2-alkenals, whereas lysine is a ubiquitous target of aldehydes, generating various types of adducts. Covalent binding of reactive aldehydes to histidine and lysine is associated with the appearance of carbonyl reactivity and antigenecity of proteins.  相似文献   

5.
4-Hydroxy-2,3-nonenal (HNE) is a biologically active aldehydic end product of oxidative decomposition of omega-3 and omega-6 polyunsaturated fatty acids of membrane phospholipids, a process referred to as lipid peroxidation. HNE has been detected in several experimental and clinical conditions in which oxidative stress has been reported to occur and several authors have suggested that HNE and related 4-hydroxy-2,3-alkenals (HAKs) of different chain length may act not only as toxic and mutagenic mediators of oxidative stress-related injury but also as biological signals in normal and pathological conditions. In this paper we will review the literature supporting the concept that HNE and HAKs may act as signal molecules able to modulate biological events such as chemotaxis, signal transduction, gene expression, cell proliferation and cell differentiation.  相似文献   

6.
Many of the pathological effects of lipid peroxidation are mediated by aldehydes generated through fragmentation of lipid peroxides. Among these aldehydes, the γ-hydroxy- and γ-oxo-α,β-alkenals, e.g., 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), are especially prone to modifying proteins and DNA through covalent adduction. In addition the "mirror image" γ-hydroxy- and γ-oxo-α,β-alkenal phospholipids can serve as high-affinity ligands for biological receptors triggering pathology. Therefore, the mechanisms by which these aldehydes are generated in vivo are under intense scrutiny. We now report observations supporting the intermediacy of a unique pseudo-symmetrical diepoxycarbinyl radical that accounts for the coproduction of HNE, ONE, and their mirror image analogues 9-hydroxy-12-oxo-10(E)-dodecenoic acid and 9-keto-12-oxo-10-dodecenoic acid upon fragmentation of 13-hydroperoxy-cis-9,10-epoxyoctadeca-11-enoic acid.  相似文献   

7.
Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.  相似文献   

8.
High-density lipoprotein (HDL) incubated with low-density lipoprotein (LDL) under oxidising conditions has previously been reported to decrease the accumulation of lipid peroxides on LDL and to diminish the biological effects of LDL, which would have been present had it been oxidatively modified in the absence of HDL. Thus far direct evidence that oxidative modification of LDL is diminished by HDL has, however, been lacking. We used electrospray ionisation mass spectrometry (ESI-MS) to detect 4-hydroxy-2-nonenal (HNE)-modified histidine residues of tryptic fragments of LDL which had been subject to Cu(2+) induced oxidation both in the presence and absence of human or avian HDL. HNE-modified angiotensin II was introduced into the incubation mixture as an internal standard and to check that HDL did not interfere in the detection of HNE-modified peptides non-specifically. Our results confirmed earlier reports that HNE modification of histidine occurs during the oxidation of LDL and for the first time revealed a marked attenuation of the process in the presence of human HDL with no effect on the detection of HNE-modified angiotensin II by ESI-MS. Avian HDL, which lacks the anti-oxidative enzyme paraoxonase, did not affect the formation of apo B adducts. Our findings therefore suggest that covalent linkage of lipid peroxidation products to LDL protein as well as the accumulation of lipid peroxides on LDL is diminished in the presence of HDL containing paraoxonase.  相似文献   

9.
4-hydroxy-2-nonenal (HNE) activates a variety of signaling pathways. We have recently evaluated the effect of oxidized fatty acid metabolites on cyclooxygenase-2 (COX-2) induction in rat liver epithelial RL34 cells and found that, among the compounds tested, HNE most dramatically induced COX-2. A p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to play a key role in the mechanism of the HNE-induced COX-2 expression. It appears that the HNE-induced activation of p38 MAPK leads to the stabilization of COX-2 mRNA.  相似文献   

10.
Several observations have implicated oxidative stress and aggregation of the presynaptic protein alpha-synuclein in the pathogenesis of Parkinson disease. alpha-Synuclein has been shown to have affinity for unsaturated fatty acids and membranes enriched in polyunsaturated fatty acids, which are especially sensitive to oxidation under conditions of oxidative stress. One of the most important products of lipid oxidation is 4-hydroxy-2-nonenal (HNE), which has been implicated in the pathogenesis of Parkinson disease. Consequently, we investigated the effects of the interaction of HNE with alpha-synuclein. Incubation of HNE with alpha-synuclein at pH 7.4 and 37 degrees C resulted in covalent modification of the protein, with up to six HNE molecules incorporated as Michael addition products. Fourier transform infrared and CD spectra indicated that HNE modification of alpha-synuclein resulted in a major conformational change involving increased beta-sheet. HNE modification of alpha-synuclein led to inhibition of fibrillation in an HNE concentration-dependent manner. This inhibition of fibrillation was shown to be due to the formation of soluble oligomers based on size exclusion high pressure liquid chromatography and atomic force microscope data. Small angle x-ray scattering analysis indicated that the HNE-induced oligomers were compact and tightly packed. Treatment with guanidinium chloride demonstrated that the HNE-induced oligomers were very stable with an extremely slow rate of dissociation. Addition of 5 mum HNE-modified oligomers to primary mesencephalic cultures caused marked neurotoxicity because the integrity of dopaminergic and GABAergic neurons was reduced by 95 and 85%, respectively. Our observations indicate that HNE modification of alpha-synuclein prevents fibrillation but may result in toxic oligomers, which could therefore contribute to the demise of neurons subjected to oxidative damage.  相似文献   

11.
Role of reactive aldehyde in cardiovascular diseases   总被引:15,自引:0,他引:15  
There is increasing evidence that aldehydes generated endogenously during the degradation process of biological molecules are involved in many of the pathophysiologies associated with cardiovasular diseases such as atherosclerosis and the long-term complications of diabetes. Major sources of reactive aldehydes in vivo are lipid peroxidation, glycation, and amino acid oxidation. Although the types of aldehydes are varied, the important aldehydes that can exert biological effects relevant to the pathobiology of oxidant injury are represented by 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes. These aldehydes exhibit facile reactivity with proteins, generating stable products at the end of a series of reactions. The protein-bound aldehydes can be detected as constituents not only in in vitro oxidized low-density lipoproteins but also in animal models of atherosclerosis and in human patients with increased risk factors or clinical manifestations of atherosclerosis, indicating that they could indeed be involved in the caldiovascular pathology. On the other hand, a number of reactive aldehydes have been implicated as inducers in generating intracellular oxidative stress and activation of stress signaling pathways, that integrate with other signaling pathways to control cellular responses to the extracellular stimuli.  相似文献   

12.
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.  相似文献   

13.
Intraperitoneal (IP) injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. We sought to clarify the exact localization of acute oxidative damage in Fe-NTA-induced nephrotoxicity by performing immunogold light and electron microscopic (EM) techniques using an antibody against 4-hydroxy-2-nonenal (HNE)-modified proteins. Biochemical assays were done to provide complementary quantitative data. Renal accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde (MDA) and 4-hydroxy-2-alkenals (4-HDA), increased in parallel with protein carbonyl content, an indicator of protein oxidation, 30 min after administration of Fe-NTA. Immunogold light microscopy showed that HNE-modified proteins increased at 30 min with positivity localized to proximal tubular cells. Immunogold EM demonstrated that HNE-modified proteins were mainly in the mitochondria and nuclei of the proximal tubular epithelium. The intensity of labeling at both the light and EM levels increased together with levels of biochemically measured lipid peroxidation products and protein carbonyl content. Our data suggest that the mechanism of acute nephrotoxicity of Fe-NTA involves mitochondrial and nuclear oxidative damage, findings that may help to define the mechanisms of iron-induced cell injury.  相似文献   

14.
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We used immunogold electron microscopic (EM) techniques with antibodies raised against 4-hydroxy-2-nonenal (HNE) -modified proteins, dinitrophenol, and nitrotyrosine to quantify and localize the age-dependent accrual of oxidative damage in rhesus monkey vastus lateralis skeletal muscle. Using immunogold EM analysis of muscle from rhesus monkeys ranging in age from 2 to 34 years old, a fourfold maximal increase in levels of HNE-modified proteins was observed. Likewise, carbonyl levels increased approximately twofold with aging. Comparing 17- to 23-year-old normally fed to age-matched monkeys subjected to CR for 10 years, levels of HNE-modified proteins, carbonyls, and nitrotyrosine in skeletal muscle from the CR group were significantly less than control group values. Oxidative damage largely localized to myofibrils, with lesser labeling in other subcellular compartments. Accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde and 4-hydroxy-2-alkenals, and protein carbonyls were measured biochemically and confirmed the morphological data. Our study is the first to quantify morphologically and localize the age-dependent accrual of oxidative damage in mammalian skeletal muscle and to demonstrate that oxidative damage in primates is lowered by CR.  相似文献   

15.
Chronic inflammation, superimposed by amyloid fibril deposition, is believed to trigger the cascade of oxidative stress response in the affected organs and tissues. We examined immunohistochemically the distribution of 4-hydroxy-2-nonenal (HNE) and N(epsilon)-(carboxymethyl)lysine (CML), markers of lipid peroxidation and advance glycation end products (AGE), respectively, in spleen sections and peritoneal macrophages (MPhi) from mice before and during AA amyloidosis. With time, both HNE and CML immunoreactivities increased significantly in MPhi and splenic reticuloendothelial cells, known to be associated with the clearance of serum amyloid A, the precursor of AA fibrils. HNE and CML were localized to the plasma membrane and the cytoplasmic compartment of MPhi and HNE only at the nuclear membrane. These markers were also colocalized bound to AA fibrils infiltrating the splenic sinus walls. Our results reinforce the notion that oxidative stress is an integral component of amyloidotic tissues. Both lipid peroxidation and AGE have been implicated in protein modification and amyloid fibril formation. The significance of HNE and CML associated with the monocytoid cells and implicated in SAA clearance and AA fibril formation, is discussed with the pathogenesis of AA fibrils.  相似文献   

16.
Lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) may be responsible for various pathophysiological events under oxidative stress, since they injure cellular components such as proteins and DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a key enzyme of glycolysis and has been reported to be a multifunctional enzyme, is one of the enzymes inhibited by HNE. Previous studies showed that GAPDH is degraded when incubated with acetylleucine chloromethyl ketone (ALCK), resulting in the liberation of a 23-kDa fragment. In this study, we examined whether GAPDH incubated with HNE or other aldehydes of lipid peroxidation products are degraded similarly to that with ALCK. The U937 cell extract was incubated with these aldehydes at 37 degrees C and analyzed by Western blotting using anti-GAPDH antibodies. Incubation with HNE or 4-hydroxy-2-hexenal (HHE) decreased GAPDH activity and GAPDH protein level, and increased the 23-kDa fragment, in time- and dose-dependent manners, but that with other aldehydes did not. Gel filtration using the Superose 6 showed that the GAPDH-degrading activity was eluted in higher molecular fractions than proteasome activity. The enzyme activity was detected at the basic range of pH and inhibited by serine protease inhibitors, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, but not by other protease inhibitors including a proteasome inhibitor, MG-132, and a tripeptidyl peptidase II (TPP II) inhibitor, AAF-CMK. These results suggest that GAPDH modified by HNE and HHE is degraded by a giant serine protease, releasing the 23-kDa fragment, not by proteasome or TPP II.  相似文献   

17.
《Free radical research》2013,47(8):39-48
Abstract

Elevated levels of pro-oxidants and various markers of oxidative tissue damage were found in diabetic patients, indicating involvement of oxidative stress in the pathogenesis of diabetes mellitus (DM). On one side, physiological levels of reactive oxygen species (ROS) play an important role in redox signaling of various cells, while on the other, excessive ROS production can jeopardize the integrity and physiological functions of cellular macromolecules, in particular proteins, thus contributing to the pathogenesis of DM. Reactive aldehydes, especially 4-hydroxynonenal (HNE), are considered as second messengers of free radicals that act both as signaling molecules and as cytotoxic products of lipid peroxidation causing long-lasting biological consequences, in particular by covalent modification of macromolecules. Accordingly, the HNE and related reactive aldehydes may play important roles in the pathophysiology of DM, both in the development of the disease and in its progression and complications due to the following: (i) exposure of cells to supraphysiological levels of 4-hydroxyalkenals, (ii) persistent and sustained generation of 4-hydroxyalkenals that progressively affect vulnerable cells that lack an efficient bioactive aldehyde neutralization system, (iii) altered redox signaling influenced by reactive aldehydes, in particular by HNE, and (iv) induction of extracellular generation of similar aldehydes under secondary pathological conditions, such as low-grade inflammation.  相似文献   

18.
Among the diverse risk factors involved in atherosclerosis, LDL are thought to become atherogenic after undergoing oxidative modifications, characterized by oxidized lipid formation and structural alterations of apoB. Oxidized LDL alter various signaling pathways and exhibit a broad range of biological responses including inflammation, gene expression, cell proliferation or apoptosis. The biological effects of oxidized LDL are related to the presence of peroxidation products such as hydroperoxides, lysophosphatidylcholines, oxysterols and aldehydes.4-Hydroxynonenal (HNE) is one of the most abundant aldehydes formed during the oxidation of polyunsaturated fatty acids in LDL and in membranes. It is able to react with thiols and free amino group residues of proteins. HNE is involved in apoB modifications that alter LDL metabolism and cell protein-adduct formation which may mediate in part the biological effects of oxidized LDL. We report here that HNE delivered to cells by oxidized LDL reacts with cellular proteins, for instance with tyrosine kinase receptors (RTK) such as EGFR and PDGFR. HNE induces in vitro derivatization and tyrosine phosphorylation of RTK (the fine molecular mechanism and conformational changes remain to be elucidated). In intact living cells, oxidized LDL (and pure HNE) trigger HNE-adduct formation and activation of PDGFR and EGFR, through an antioxidant-insensitive and reactive oxygen species independent mechanism. The presence of HNE-PDGFR adducts in atherosclerotic areas lead one to hypothesize that oxidized lipids may also react in vivo with membrane RTK, thereby disturbing their cellular functions.  相似文献   

19.
A modified procedure is presented for the HPLC determination of nanomolar concentrations of n-alkanals, hydroxyalkenals, malondialdehyde and furfural in biological fluid. The modifications allow aldehyde profile analysis of small samples of fresh, human, low density lipoprotein (LDL), enabling more detailed studies of LDL fatty acid peroxidation. Aldehydes are reacted with 1,3-cyclohexanedione to produce fluorescent derivatives which are separated by gradient, reversed phase, high performance liquid chromatography (HPLC). Analysis time has been reduced by shortening the sample preparation. Sensitivity has been increased by miniaturization of the derivatisation procedure, reducing required sample size. Recoveries of added aldehydes have been improved. In addition, the method presented allows determination of three further aldehydes, not measured previously by CHD methods: malondialdehyde, formaldehyde and furfural. Recovery and variability data and concentrations of aldehydes found in human LDL are given. The capacity of the method for further development, to enable determination of other aldehydes such as the trans, 2-alkenals, is also demonstrated.  相似文献   

20.
Cyclooxygenases (COXs) catalyze the conversion of arachidonic acid to eicosanoids, which mediate a variety of biological actions involved in vascular pathophysiology. In the present study, we investigated the role of lipid peroxidation products in the up-regulation of COX-2, an inducible isoform responsible for high levels of prostaglandin production during inflammation and immune responses. COX-2 was found to colocalize with 4-hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived aldehyde, in foamy macrophages within human atheromatous lesions, suggesting that COX-2 expression may be associated with the accumulation of lipid peroxidation products within macrophages. To test the hypothesis that lipid peroxidation products might be involved in the regulation of prostanoid biosynthesis, we conducted a screen of oxidized fatty acid metabolites and found that, among the compounds tested, only HNE showed inducibility of the COX-2 protein in RAW264.7 macrophages. In addition, intraperitoneal administration of HNE resulted in an increase in cell numbers in the peritoneal cavity that was associated with significant increases in the peritoneal and tissue levels of COX-2 in mice. To understand the possible signaling mechanism underlying the inducing effect of HNE on COX-2 up-regulation, we examined the phosphorylation events that may lead to COX-2 induction and found that HNE did not stimulate the induction of nitric oxide synthase and activation of NF-kappaB but significantly activated p38 mitogen-activated protein kinase and its upstream kinase in RAW264.7 macrophages. Tyrosine kinases, such as the epidermal growth factor-like and Src family tyrosine kinases, appeared to mediate the stabilization of COX-2 mRNA via the p38 mitogen-activated protein kinase pathway. These findings suggest that HNE accumulated in macrophages/foam cells may represent an inflammatory mediator that plays a role in stimulation of the inflammatory response and contributes to the progression of atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号