首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells   总被引:1,自引:0,他引:1  
Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions.  相似文献   

2.
3.
Long noncoding RNAs (lncRNAs) have drawn increasing attention because of the role which they play in various diseases, including osteosarcoma. So far, the function and mechanism of HOTAIR in osteosarcoma are unclear. In our study, we observed that HOTAIR was elevated accompanied with a decrease of miR-217 and an increase of ZEB1 in human osteosarcoma cells including U2OS, MG63, Saos-2, and SW1353 compared with human osteoblast cell line hFOB. In addition, the subsequent functional assay exhibited that silencing HOTAIR could significantly repress osteosarcoma cell growth, migration, invasion, and induce cell apoptosis capacity, which indicated that HOTAIR exerted an oncogenic role in osteosarcoma. Moreover, it was revealed by using bioinformatics analysis that HOTAIR can be targeted by microRNA-217 (miR-217). miR-217 has been recognized as a crucial tumor suppressive gene in cancers. We verified that mimics of miR-217 were able to suppress the osteosarcoma development. Furthermore, real-time quantitative PCR showed that HOTAIR siRNA increased miR-217 expression. Besides these, ZEB1 was identified as a downstream gene of miR-217 and we found that HOTAIR can mediate osteosarcoma progress by upregulating ZEB1 expression via acting as a competitive endogenous RNA (ceRNA) via miR-217. Taken these together, our findings in this study indicated that HOTAIR/miR-217/ZEB1 axis, as a novel research point can provide new insights into molecular mechanism of osteosarcoma development.  相似文献   

4.
5.
6.
7.
miR-219-5p has been reported to act as either a tumor suppressor or a tumor promoter in different cancers by targeting different genes. In the present study, we demonstrated that miR-219-5p negatively regulated the expression of TBXT, a known epithelial–mesenchymal transition (EMT) inducer, by directly binding to TBXT 3′-untranslated region. As a result of its inhibition on TBXT expression, miR-219-5p suppressed EMT and cell migration and invasion in breast cancer cells. The re-introduction of TBXT in miR-219-5p overexpressing cells decreased the inhibitory effects of miR-219 on EMT and cell migration and invasion. Moreover, miR-219-5p decreased breast cancer stem cell (CSC) marker genes expression and reduced the mammosphere forming capability of cells. Overall, our study highlighted that TBXT is a novel target of miR-219-5p. By suppressing TBXT, miR-219-5p plays an important role in EMT and cell migration and invasion of breast cancer cells.  相似文献   

8.
9.
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+, malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+, MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.  相似文献   

10.
11.
The long noncoding RNAs (lncRNAs) have been increasingly appreciated as key players underlying tumourigenesis and hold great potentials as prognostic biomarkers and therapeutic targets. However, their roles in head neck squamous cell carcinoma (HNSCC) have remained incompletely known. Here, we sought to reveal the oncogenic roles and clinical significance of a tumour‐associated lncRNA, zinc finger E‐box binding homeobox 2 antisense RNA 1 (ZEB2‐AS1), in HNSCC. ZEB2‐AS1 was aberrantly overexpressed in a fraction of HNSCC samples. Its overexpression significantly associated with large tumour size, cervical node metastasis and reduced overall and disease‐free survival. Antisense oligonucleotides (ASO)‐mediated ZEB2‐AS1 depletion markedly inhibited cell proliferation, migration and invasion while triggered apoptosis in HNSCC cells in part via modulating ZEB2 mRNA stability. Enforced overexpression of ZEB2 largely attenuated the phenotypic changes resulted from ZEB2‐AS1 inhibition except the impaired cell proliferation. In addition, ZEB2‐AS1 was required for TGF‐β1‐induced epithelial‐mesenchymal transition (EMT) in vitro. Significantly reduced tumour growth and lung metastasis were observed in ZEB2‐AS1‐depleted cells in HNSCC xenograft animal models. Taken together, our findings reveal that overexpression of ZEB2‐AS1 associates with tumour aggressiveness and unfavourable prognosis by serving as a putative oncogenic lncRNA and a novel prognostic biomarker in HNSCC.  相似文献   

12.
Lung adenocarcinoma is the most prevalent type of lung cancer with a high incidence and mortality worldwide. Metastasis is the major cause of high death rate in lung cancer and the potential mechanism of lung adenocarcinoma metastasis remains indistinct. Emerging investigations have demonstrated that long noncoding RNA is a kind of non–protein coding RNA and plays a critical role in cancer progression and metastasis. TTN antisense RNA 1 (TTN-AS1) has been reported to promote cell growth and metastasis in cancer. However, the function of TTN-AS1 in lung adenocarcinoma is still to be illustrated. In this study, we observed that TTN-AS1 was upregulated in tissues and cells of lung adenocarcinoma and associated with poor overall survival. TTN-AS1 promoted cell proliferation, migration, invasion, and epithelial-mesenchymal transition in lung cancer. TTN-AS1 directly bound with miR-4677-3p and negatively regulated miR-4677-3p. MiR-4677-3p rescued the inhibitive impacts of TTN-AS1 knockdown on lung adenocarcinoma. Furthermore, zinc finger E-box binding homeobox 1 (ZEB1) was the target of miR-4677-3p, and TTN-AS1 modulated ZEB1 by competing for miR-4677-3p. TTN-AS1 drove the invasion and migration of lung adenocarcinoma cells by targeting the miR-4677-3p/ZEB1 axis. To sum up, our study offers insights into the mechanism of TTN-AS1 in lung adenocarcinoma metastasis and targeting the TTN-AS1/miR-4677-3p/ZEB1 axis may be the potential innovate therapeutic strategy for the patients with lung adenocarcinoma.  相似文献   

13.
14.
Diabetic nephropathy (DN) is a kind of microvascular complications of diabetes. Long noncoding RNAs (lnRNAs) can participate in the development of various diseases, including DN. However, the function of lncRNA NEAT1 is unclear. In our present study, we reported that NEAT1 was significantly increased in streptozotocin-induced DN rat models and high-glucose-induced mice mesangial cells. We observed that knockdown of NEAT1 greatly inhibited renal injury of DN rats. Meanwhile, downregulation of NEAT1-modulated extracellular matrix (ECM) proteins (ASK1, fibronectin, and TGF-β1) expression and epithelial–mesenchymal transition (EMT) proteins (E-cadherin and N-cadherin) in vitro. Previously, miR-27b-3p has been reported to be involved in diabetes. Here, miR-27b-3p was decreased in DN rats and high-glucose-induced mice mesangial cells. The direct correlation between NEAT1 and miR-27b-3p was validated using the dual-luciferase reporter assay and RNA immunoprecipitation experiments. In addition, zinc finger E-box binding homeobox 1 (ZEB1), which has been identified in the process of EMT clearly contributes to EMT progression. ZEB1 was predicted as a target of miR-27b-3p and overexpression of miR-27b-3p dramatically repressed ZEB1 expression. Therefore, our data implied the potential role of NEAT1 in the fibrogenesis and EMT in DN via targeting miR-27b-3p and ZEB1.  相似文献   

15.
16.
17.
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.  相似文献   

18.
Nasopharyngeal carcinoma (NPC), a highly metastatic and invasive malignant tumor originating from the nasopharynx, is widely prevalent in Southeast Asia, the Middle East and North Africa. Although viral, dietary and genetic factors have been implicated in NPC, the molecular basis of its pathogenesis is not well defined. Based on a recent microRNA (miRNA) microarray study showing miR-200 downregulation in NPC, we further investigated the role of miR-200a in NPC carcinogenesis. We found that the endogenous miR-200a expression level increases with the degree of differentiation in a panel of NPC cell lines, namely undifferentiated C666-1, high-differentiated CNE-1, and low-differentiated CNE-2 and HNE1 cells. By a series of gain-of-function and loss-of-function studies, we showed that over-expression of miR-200a inhibits C666-1 cell growth, migration and invasion, whereas its knock-down stimulates these processes in CNE-1 cells. In addition, we further identified ZEB2 and CTNNB1 as the functional downstream targets of miR-200a. Interestingly, knock-down of ZEB2 solely impeded NPC cell migration and invasion, whereas CTNNB1 suppression only inhibited NPC cell growth, suggesting that the inhibitory effects of miR-200a on NPC cell growth, migration and invasion are mediated by distinct targets and pathways. Our results reveal the important role of miR-200a as a regulatory factor of NPC carcinogenesis and a potential candidate for miRNA-based therapy against NPC.  相似文献   

19.
《Reproductive biology》2022,22(1):100578
Though endometriosis is benign, however, it shares certain characteristics with cancers, such as the ability to invade and metastasize. Previous studies have demonstrated that S-phase kinase associated protein2 (SKP2) promotes invasion, tumorigenesis, and metastasis. However, its correlation with adenomyosis is unclear. Herein, we aimed to look into SKP2 expression patterns and regulatory effects on endometrial stromal cell (ESC) proliferation and invasion, and its internal mechanism in adenomyosis. Western blot, qRT-PCR, and immunochemistry were carried out for detecting SKP2 and ZEB1 expression in ESC of adenomyosis and adenomyosis endometrial tissue. The primary ESCs were identified using immunofluorescence. SKP2 knockdown was accomplished in vitro by transfecting a particular lentivirus vector. The colony formation and CCK-8 assays were carried out for assessing cell proliferation, while cell invasion potential was assessed using the transwell assay. Both SKP2 and ZEB1 were found to be significantly upregulated in adenomyosis endometrial tissue. Knockdown of SKP2 inhibited adenomyotic ESC invasion and proliferation. Further experiments showed that knocking out SKP2 reduced ZEB1 expression in adenomyotic ESCs. Our results showed that SKP2 could regulate ZEB1 expression, and increased SKP2 may play a role in the pathogenesis of adenomyosis and stimulating ESC proliferation and invasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号