首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellite sequences were cloned and sequenced from Cicer reticulatum, the wild annual progenitor of chickpea (C. arietinum L.). Based on the flanking sequences of the microsatellite motifs, 11 sequence-tagged microsatellite site (STMS) markers were developed. These markers were used for phylogenetic analysis of 29 accessions representing all the nine annual Cicer species. The 11 primer pairs amplified distinct fragments in all the annual species demonstrating high levels of sequence conservation at these loci. Efficient marker transferability (97%) of the C. reticulatum STMS markers across other species of the genus was observed as compared to microsatellite markers from the cultivated species. Variability in the size and number of alleles was obtained with an average of 5.8 alleles per locus. Sequence analysis at three homologous microsatellite loci revealed that the microsatellite allele variation was mainly due to differences in the copy number of the tandem repeats. However, other factors such as (1) point mutations, (2) insertion/deletion events in the flanking region, (3) expansion of closely spaced microsatellites and (4) repeat conversion in the amplified microsatellite loci were also responsible for allelic variation. An unweighted pairgroup method with arithmetic averages (UPGMA)-based dendrogram was obtained, which clearly distinguished all the accessions (except two C. judaicum accessions) from one another and revealed intra- as well as inter-species variability in the genus. An annual Cicer phylogeny was depicted which established the higher similarity between C. arietinum and C. reticulatum. The placement of C. pinnatifidum in the second crossability group and its closeness to C. bijugum was supported. Two species, C. yamashitae and C. chorassanicum, were grouped distinctly and seemed to be genetically diverse from members of the first crossability group. Our data support the distinct placement of C. cuneatum as well as a revised classification regarding its placement.  相似文献   

2.
In this study we report the isolation of microsatellite sequences and their conversion to sequence‐tagged microsatellite sites (STMS) markers in chickpea (Cicer arietinum L.). Thirteen putative recombinants isolated from a chickpea genomic library were sequenced, and used to design 10 STMS primer pairs. These were utilized to analyse the genetic polymorphism in 15 C. arietinum varieties and two wild varieties, C. echinospermum and C. reticulatum. All the primer pairs amplified polymorphic loci ranging from four to seven alleles per locus. The observed heterozygosity ranged from 0 to 0.6667. Most of the STMS markers also amplified corresponding loci in the wild relatives suggesting conservation of these markers in the genus. Hence, these polymorphic markers will be useful for the evaluation of genetic diversity and molecular mapping in chickpea.  相似文献   

3.
Random amplified polymorphic DNA (RAPD) fragments were used to assess genetic relationships among Cicer spp. growing in Turkey. Seven 10-mer primers selected from a 50 random oligonucleotide primer set, depending on their ability to amplify genomic DNA in all species, were used to detect RAPD variation in 43 wild and cultivated accessions representing ten species. These primers yielded 95 reproducible amplification products, 92 of which were polymorphic. Pairwise genetic distances of accessions estimated according to Nei and Li (1979) were used to produce a dendrogram using UPGMA. The dendrogram contained two main clusters, one of which comprised accessions of the four perennial species (Cicer montbretii, Cicer isauricum, Cicer anatolicum and Cicer incisum) together with the accessions of the three annual species (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum), and the other cluster included the remaining three annual species (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Analysis of RAPD variation showed that C. incisum is the most similar perennial species to annuals, and C. reticulatum is the closest annual species to chickpea. These results generally agree with our allozyme study which was carried out using same Cicer collection and previous studies of relationships among annual species. The results also show that RAPD markers can be used to distinguish Cicer species and to survey genetic variation and relationships among taxonomic units in this genus.  相似文献   

4.
In order to determine the pattern of genetic diversity within and among the species of Cicer and to estimate interspecific genetic relationships, allelic variation was assayed for 23 isozyme loci in 63 accessions of 11 species of Cicer using starch gel electrophoresis. The total allozymic variation observed in the genus (H t )was equal to 0.60. When partitioned (G st), 96% of this allelic diversity was found among rather than within species. The allelic diversity among species (D st)and allelic diversity within species (H s)were equal to 0.58 and 0.02, respectively. Cicer reticulatum and C. pinnatifidum had the highest proportion of polymorphic loci (17.39%) and the highest mean number of alleles per locus (1.22 and 1.17, respectively). UPGMA cluster analysis of Nei's unbiased genetic distance revealed four genetic groups. One includes C. reticulatum, C. arietinum and C. echino spermum where the first 2 species represent a putative derivative-progenitor pair. A second cluster contains C. bijugum, C. pinnatifidum and C. judaicum. Cicer yamashitae, C. chorassanicum, C. anatolicum and C. songoricum form a third group. Finally, C. cuneatum, which has a very distinct isozyme profile and peculiar morphological features, is the only member of a fourth species group. This species grouping agrees partially with those obtained from crossability and cytogenetic studies. The results suggest that the annual habit arose from perennial progenitors at least twice in the genus Cicer.  相似文献   

5.
Allozymic variation at 30 isozyme loci was examined electrophoretically in nine annual and one perennial species ofCicer. While most of the accessions examined were monomorphic, species can be differentiated on the basis of their enzyme phenotypes. Several groups of species were identified based upon genetic distance values. For example,C. arietinum, C. reticulatum, andC. echinospermum shared the same alleles for most of the loci exmained. PerennialC. anatolicum is also closely related to this group. Similarly,C. judaicum, C. bijugum, andC. pinnatifidum formed another group. Two annual species,C. chorassanicum andC. yamashitae clustered together, whereasC. cuneatum was the most distantly related species. Correlations were found between genetic distances and geographic distribution. Results from enzyme electrophoresis tend to support the previously reported taxonomic treatments based upon crossability and morphological similarity. However,C. yamashitae, which has been classified in the second crossability group, is quite distinct genetically and morphologically from the remaining species of the group. An isozyme gene duplication observed in the genus suggested the monophyletic origin of the species examined in the present study.  相似文献   

6.
 Random amplified polymorphic DNA markers were used to distinguish between nine different Cicer taxa representing the cultivated chickpea and eight other related annual wild species. Of the 75 random10-mer primers tested, only 8 amplified genomic DNA across all the species. A total of 115 reproducibly scorable RAPD markers were generated, all except 1 polymorphic, and these were utilized to deduce genetic relationships among the annual Cicer species. Four distinct clusters were observed and represented C. arietinum, C. reticulatum and C. echinospermum in first cluster followed by C. chorassanicum and C. yamashitae in the second cluster, while C. pinnatifidum, C. judaicum and C. bijugum formed the third cluster. Cicer cuneatum did not cluster with any of the species and was most distantly placed from the cultivated species. Except for the placement of C. chorassanicum and C. yamashitae, deduced species’ relationships agreed with previous studies. In addition, species-diagnostic amplification products specific to all the nine species were identified. The results clearly demonstrate a methodology based on random-primed DNA amplification that can be used for studying Cicer phylogeny and chickpea improvement. Received: 27 July 1998 / Accepted: 5 August 1998  相似文献   

7.
AFLP markers were used to assess genetic relationships among Cicer species with distribution in Turkey. Genetic distances were computed among 47 Cicer accessions representing four perennial and six annual species including chickpea, using 306 positions on AFLP gels. AFLP-based grouping of species revealed two clusters, one of which includes three perennial species, Cicer montbretii, Cicer isauricum and Cicer anatolicum, while the other cluster consists of two subclusters, one including one perennial, Cicer incisum, along with three annuals from the second crossability group (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum) and the other one comprising three annuals from the first crossability group (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Consistent with previous relationship studies in the same accession set using allozyme and RAPD markers, in AFLP-based relationships, C. incisum was the closest perennial to nearly all annuals, and C. reticulatum was the closest wild species to C. arietinum. Cluster analysis revealed the grouping of all accessions into their distinct species-clusters except for C. reticulatum accessions, ILWC247, ILWC242 and TR54961; the former was found to be closer to the C. arietinum accessions while the latter two clustered with the C. echinospermum group. Small genetic distance values were detected among C. reticulatum accessions (0.282) and between C. reticulatum and C. arietinum (0.301) indicating a close genetic similarity between these two species. Overall, the AFLP-based genetic relationships among accessions and species were congruous with our previous study of genetic relationships using allozymes. The computed level of AFLP variation and its distribution into within and between Cicer species paralleled the previous report based on RAPD analyses. AFLP analysis also confirmed the presence of the closest wild relatives and previous projections of the origin of chickpea in southern Turkey. Results presented in this report indicate that AFLP analysis is an efficient and reliable marker technology in determination of genetic variation and relationships in the genus Cicer. Obviously, the use of AFLP fingerprinting in constructing a detailed genetic map of chickpea and cloning, and characterizing economically important traits would be promising as well.Communicated by P. Langridge  相似文献   

8.
Enrichment methods were optimised in order to isolate large numbers of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.), with the aim of developing a comprehensive set of loci for trait mapping and cultivar identification. Two libraries were constructed showing greater than 50% enrichment for a variety of SSR-motif types. Sequence characterisation of 1853 clones identified 859 SSR-containing clones, of which 718 were unique. Truncation of flanking sequences limited potential primer design to 366 clones. One-hundred selected SSR primer pairs were evaluated for amplification and genetic polymorphism across a panel of diverse genotypes. The efficiency of amplification was 81%. A relatively high level of SSR polymorphism was detected (67%), with a range of 2–7 alleles per locus. Mendelian segregation of alleles detected by selected SSR-locus primer pairs was demonstrated in the F1 progeny of a pair cross. Cross-species amplification was detected in a number of related pasture and turfgrass species, with high levels of transfer to other Lolium species and members of the related genus Festuca. The identity of putative SSR ortholoci in these related species was confirmed by DNA sequence analysis. These loci constitute a valuable resource of ideal markers for the molecular breeding of ryegrasses and fescues. Received: 8 May 2000 / Accepted: 13 June 2000  相似文献   

9.
Genetic relationships among the annual species of Cicer L.   总被引:3,自引:0,他引:3  
Summary Genetic relationships between 7 annual species of the genus Cicer, including the cultivated chickpea, have been studied. These species were assigned to 3 crossability groups. In each group interspecific hybrids could be obtained but their fertility differed considerably in the various cross combinations. Crosses between members of different groups yielded no viable seeds. The possibility of gene transfer from the wild species to the cultivated chickpea C. arietinum was also assessed. Only two species could be considered for this purpose, C. reticulatum, which is the wild progenitor of the cultivated species, and C. echinospermum, which is in the secondary gene pool of C. arietinum. A unique postzygotic reproductive barrier mechanism was found between the members of Group II, C. judaicum, C. pinnatifidum and C. bijugum. It is based on a disharmony in the growth rate of the stigma and the anthers at the time of anthesis of the F1 interspecific hybrid so that selfpollination is avoided. It is proposed that this kind of mechanism has been involved only when an effective spatial isolation between the three species had been obtained.  相似文献   

10.
Cicer anatolicum, a perennial species, has ascochyta blight resistance superior to that found in the cultivated chickpea. However, hybridization barriers during early stages of embryo development curtail access to this trait. Since hormones play an essential role in early embryo development, we have determined the hormone profiles of 4-, 8-, and 12-day old seeds from a Canadian chickpea (Cicer arietinum L.) cv. CDC Xena, from Indian cvs. Swetha and Bharati, and from a perennial accession of C. anatolicum (PI 383626). Indole-3-acetic acid content peaked on day 4 in CDC Xena, on day 8 in both Indian cultivars but only on day 12 in C. anatolicum. The cytokinins, isopentenyladenosine (iPA) and trans zeatin riboside (tZR) were predominant in CDC Xena and Swetha seeds on day 4, whereas cis zeatin riboside was the major component in Bharati. In C. anatolicum, iPA maxed out on day 4 and tZR on day 12. The bioactive gibberellin GA1 spiked on day 4 in CDC Xena and Bharati, on day 8 in Swetha but only on day 12 in C. anatolicum. Eight-day old seeds had the highest abscisic acid content in the cultivars but spiked on day 12 in the perennial species. The hormone profiles of the perennial species showed delayed spikes in all four hormone groups indicating that there is a mismatch in the hormone requirements of the different embryos. Improving synchronization of early seed hormone profiles of cultivated and perennial chickpea should improve interspecific hybrid production.  相似文献   

11.
Cicer reticulatum, C. echinospermum, C. bijugum, C. judaicum, C. pinnatifidum, C. cuneatum and C. yamashitae are wild annual Cicer species and potential donors of valuable traits to improve chickpea (C. arietinum). As part of a large project to characterize and evaluate wild annual Cicer collections held in the world gene banks, AFLP markers were used to study genetic variation in these species. The main aim of this study was to characterize geographical patterns of genetic variation in wild annual Cicer germplasm. Phylogenetic analysis of 146 wild annual Cicer accessions (including two accessions in the perennial C. anatolicum and six cultivars of chickpea) revealed four distinct groups corresponding well to primary, secondary and tertiary gene pools of chickpea. Some possible misidentified or mislabelled accessions were identified, and ILWC 242 is proposed as a hybrid between C. reticulatum and C. echinospermum. The extent of genetic diversity varied considerably and was unbalanced between species with greatest genetic diversity found in C. judaicum. For the first time geographic patterns of genetic variation in C. reticulatum, C. echinospermum, C. bijugum, C. judaicum and C. pinnatifidum were established using AFLP markers. Based on the current collections the maximum genetic diversity of C. reticulatum, C. echinospermum, C. bijugum and C. pinnatifidum was found in southeastern Turkey, while Palestine was the centre of maximum genetic variation for C. judaicum. This information provides a solid basis for the design of future collections and in situ conservation programs for wild annual Cicer.  相似文献   

12.
Staginnus  C.  Winter  P.  Desel  C.  Schmidt  T.  Kahl  G. 《Plant molecular biology》1999,39(5):1037-1050
Three major repetitive DNA sequences were isolated from a genomic library of chickpea (Cicer arietinum L.) and characterized with respect to their genomic organization and chromosomal localization. All repetitive elements are genus-specific and mostly located in the AT-rich pericentric heterochromatin. Two families are organized as satellite DNAs with repeat lengths of 162–168 bp (CaSat1) and 100 bp (CaSat2). CaSat1 is mainly located adjacent to the 18S rDNA clusters on chromosomes A and B, whereas CaSat2 is a major component of the pericentric heterochromatin on all chromosomes. The high abundance of these sequences in closely related species of the genus Cicer as well as their variation in structure and copy number among the annual species provide useful tools for taxonomic studies. The retrotransposon-like sequences of the third family (CaRep) display a more complex organization and are represented by two independent sets of clones (CaRep1 and CaRep2) with homology to different regions of Ty3-gypsy-like retrotransposons. They are distributed over the pericentric heterochromatin block on all chromosomes with extensions into euchromatic regions. Conserved structures within different crossability groups of related Cicer species suggest independent amplification or transposition events during the evolution of the annual species of the genus.  相似文献   

13.
Summary Total seed storage protein of the cultivated chickpea, C. arietinum L., and eight other wild annual Cicer species (all 2n = 16) was separated and compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The seed-protein profile was a conservative and species-specific trait. Relative interspecific similarities of protein patterns were estimated using Jaccard's similarity index, and a cluster analysis was performed. The resultant dendrogram generally agreed with the limited data already available on interspecific relationships in Cicer based on morphological characteristics, crossability, genome pairing in hybrids, karyotypes and isozyme analysis. The difference between the profiles of C. judaicum and C. pinnatifidum supported the idea that they are indeed two separate species. The closest relative of C. arietinum was C. reticulatum, followed by C. echinospermum and other species, while C. cuneatum was the farthest relative. In general, C. cuneatum was also genetically the farthest removed from any other species. The suggestion that C. reticulatum is the wild progenitor of the cultivated chickpea was therefore further supported.  相似文献   

14.
Sequence Specific Amplification Polymorphisms (SSAP) were used to measure the distribution and structure of SIRE-1 retroelement populations in annual and perennial Glycine species. For SSAP analysis, primers corresponding to a region immediately upstream of the 3’LTR of the soybean retroelement SIRE-1 were chosen. Analysis reveals that SIRE-1 is present throughout the Glycine genus and shows that the annual species have similar SIRE-1 populations whilst the perennial species have much more distinct and diverse populations. The high number of species-specific subgroups suggest that SIRE-1 has been active and evolving independently in each species during the course of Glycine evolution.  相似文献   

15.
The phylogeny of the cetrarioid lichens with bifusiform spermatia and dorsiventral thalli which contain usnic acid is reanalysed using three parts of the genome, ITS rDNA, β-tubulin and GAPDH sequences. Molecular data from five cetrarioid species are presented for the first time, and 13 new sequences are combined with sequences from the gene bank to delimit the genus Nephromopsis. A monophyletic clade of Nephromopsis, Tuckneraria, ‘Cetraria’ leucostigma and ‘C.’ melaloma is identified and circumscribed as one genus, Nephromopsis, which now includes 19 species. Four new combinations are presented. A key to the species is provided.  相似文献   

16.
Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT) n and (CT/GA) n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08–0.91) and 0.74 (0.23–0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.  相似文献   

17.
A total of 31 expressed sequence tag (EST)-derived polymorphic microsatellites from tea plant, Camellia sinensis (L.) O. Kuntze, were generated and characterized using the ESTs of the author’s EST sequencing project and other sources. A set of 40 accessions tea germplasms had been used to examine the diversity. Among the 31 microsatellite loci, 24 had two to eight polymorphic alleles. Observed heterozygosity (H o) were relatively higher (on an average of 0.533), varying from 0.175 (primer 21) to 0.950 (primer 228). Cross-species polymorphic amplification in other four species and two varieties of section Thea (L.) Dyer genus Camellia L. was successful for the 24 loci. Contribution of the 24 novel EST-SSR primers presented here will provide necessary and powerful molecular tools for management and conservation studies on the tea germplasms in the future. Li-Ping Zhao and Zhen Liu contributed equally to this work.  相似文献   

18.
 The internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA were amplified and sequenced from 19 samples representing all species of the genus Mercurialis and two outgroup species, Ricinus communis and Acalypha hispida. The length of ITS1 in the ingroups ranged from 223 to 246 bp and ITS2 from 210 to 218 bp. Sequence divergence between pairs of species ranged from 1.15% to 25.88% among the ingroup species in the combined data of ITS1 and ITS2. Heuristic phylogenetic analyses using Fitch parsimony on the combined data of ITS1 and ITS2 with gaps treated as missing generated 45 equally parsimonious trees. The strict consensus tree was principally concordant with morphological classification. Within the genus, the ITS sequences recognised two main infrageneric clades: the M. perennis complex including three Eurasian stoloniferous species (M.␣leiocarpa, M. ovata and M. perennis) and the western Mediterranean group including eight both annual and perennial species. Of the western Mediterranean clade, the annual and perennial species grouped respectively into two different groups, and the annual life form is revealed as a synapomorphic character derived from perennial, whereas in the Eurasian clade ITS phylogeny suggested M. leiocarpa as basal clade sister to M.␣perennis and M. ovata. ITS phylogeny failed to resolve the relationships among the different cytotypes of M. ovata and M. perennis. ITS phylogeny also suggested rapid karyotypic evolution for the genus. The karyotypic divergence among the perennial species of western Mediterranean region did not corroborate the nucleotide sequence divergence among the species. Optimisation of chromosome numbers onto the ITS phylogeny suggested x=8 to be the ancestral basic chromosome number of the genus. ITS phylogeny confirmed that the androdioecy of M. ambigua is derived from dioecy. The nucleotide heterozygosity and additivity in ITS sequences clearly confirm the interspecific hybridisation in the genus Mercurialis. Received December 22, 2001; accepted May 21, 2002?Published online: November 14, 2002 Address of the authors: Martin Kr?henbühl, Yong-Ming Yuan (correspondence) and Philippe Küpfer, Institut de Botanique, Laboratoire de botanique évolutive, Université de Neuchatel, Emile-Argand 11, CH-2007 Neuchatel, Suisse. (e-mail: yong-ming.yuan@unine.ch)  相似文献   

19.
Lack of requisite genetic variation in cultivated species has necessitated systematic collection, documentation and evaluation of wild Cicer species for use in chickpea variety improvement programs. Cicer arietinum has very narrow genetic variation, and the use of a wild relative in chickpea breeding could provide a good opportunity for increasing the available genetic variation of cultivated chickpea. Genetic diversity and the relationship of 71 accessions, from the core area of chickpea origin and domestication (Southeastern Turkey), belonging to five wild annual species and one cultivated species (Cicer arietinum) were analysed using iPBS-retrotransposon and ISSR markers. A total of 136 scorable bands were detected using 10 ISSR primers among 71 accessions belonging to 6 species, out of which 135 were polymorphic (99.3 %), with an average of 13.5 polymorphic fragments per primer, whereas iPBS detected 130 bands with 100 % polymorphism with an average of 13.0 bands per primer. C. echinospermum and C. pinnatifidum were the most diverse among species, whereas C. arietinum exhibited lower polymorphism. The average polymorphism information contents (PIC) value for both marker systems was 0.91. The clustering of the accessions and species within groups was almost similar, when iPBS and ISSR NeighborNet (NNet) planar graphs were compared. Further detailed studies are indispensable in order to collect Cicer germplasm, especially C. reticulatum, from southeastern Turkey particularly, from Karacada? Mountain for preservation, management of this species, and to study their genetic diversity at molecular level. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in wild chickpea and in cultivated chickpea.  相似文献   

20.
Bioassay based on thick and short root (Tsr) and hair deformation (Had) phenotypes were used to test the activity of Nod factors produced byRhizobium sp. (Cicer) strains HS-1, Rcd-301, IC-59, IC-76 and Ca-181 on chickpea (Cicer arietinum) cv. ‘C-235’. Nod mutants ofRhizobium sp. (Cicer) did not produce Tsr+ and Had+ phenotypes on chickpea, indicating the requirement of nodulation genes for their appearance. The strain HS-1 treated with root exudates of pea (Pisum sativum), berseem (Trifolium alexandrinum) and lucerne (Medicago sativa) failed to produce the Tsr+ and Had+ phenotypes on chickpea. ConverselyR. leguminosarum bvs.viciae andtrifolii, R. meliloti, Rhizobium sp. (Sesbania), andRhizobium sp. (Cajanus) induced with chickpea root exudates did not show Tsr+ and Had+ phenotypes on chickpea. It appears that host specificity inRhizobium sp. (Cicer)-chickpea symbiosis is regulated by the production of host-specific factors which are not active on heterologous hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号