首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gelling properties of pectins are known to be closely related to the degree of methylation (DM) and the distribution of the ester groups. In order to investigate this dependency, a natural citrus pectin (DM 64%) has been methylated to pectins with higher DM or saponified to achieve pectins with lower DM. A simple method for determination of DM by 1H NMR spectroscopy is presented. New modified pectins have been prepared by treatment of pectins having different DM with NaBH(4) to reduce selectively the methyl esters to primary alcohols in the presence of free acids. The degree of reduction (DR) and the DM of the remaining carboxylic acids could likewise be determined by 1H NMR spectroscopy. The new reduced pectins are recognized by the pectin degrading enzymes polygalacturonase PGI and PGII as well as by pectin lyase, all from Aspergillus niger, but the enzymes exhibit lower specific activities as compared with unmodified pectin. The new reduced pectins exhibit high gelling properties.  相似文献   

2.
Two series of pectins with different levels and patterns of methyl esterification were produced by treatment of a very highly methylated lime pectin with a fungus- or plant-pectin methylesterase. The interchain distribution of free carboxyl groups was investigated by size exclusion and ion exchange chromatography. "Homogeneous" populations with respect to molar mass or charge density were thereby obtained, and their composition, molar mass, and calcium binding properties were investigated. The composition varies from one size exclusion chromatography fraction to another, the highest molar mass fraction being richer in rhamnogalacturonic sequences and exhibiting a slightly higher degree of methylation (DM). Separation of pectins by ion exchange chromatography revealed a narrow charge density distribution for pectins deesterified by fungus-pectin methylesterase, in agreement with a multichain mechanism. Conversely, pectins deesterified by plant-pectin methylesterase exhibited a very large charge density distribution suggesting a processive mechanism. The interchain polydispersity with regard to DM was however shown to have no impact on calcium binding properties of the different fractions. The progressive dimerization through calcium ions with decreasing DM of pectins deesterified by plant-pectin methylesterase seems to be the result of a peculiar intrachain pattern of methyl esterification that can be attributed to a multiple attack mechanism.  相似文献   

3.
Apple polyphenol (procyanidin)–cell wall interactions were investigated and their impact on polysaccharide extractability were determined. Native and oxidised procyanidins with average degrees of polymerisation of 13 and 55 were incubated with cell walls. The effect of polyphenol oxidation was evaluated according to two designs: polyphenols were chemically oxidised either before or during interaction. The extent of procyanidin binding to cell walls was assessed by the weight increase of procyanidin–cell wall complexes as compared to weights of cell walls alone. Pectins and hemicelluloses were subsequently extracted from cell walls and from cell wall–procyanidin adducts using a chelating agent (ammonium oxalate), a pectin lyase treatment and NaOH.Weight increases of complexes ranged from 20% to 29%. Weight gains increased in the following order: native, pre-oxidised, simultaneously oxidised and bound procyanidins, these different fractions were, respectively, bound to cell walls. In presence of native procyanidins, oxalate extracted less pectins, and those pectins had lower degrees of methylation, as compared to cell walls alone. When cell walls were incubated with oxidised and oxidising procyanidins, even less pectins with lower degree of methylation were extracted. Major findings indicated that procyanidins mainly bound to pectins as compared to other cell wall compounds: (1) the procyanidin adsorption to cell walls limited the depolymerisation of pectins supposedly induced by pectin lyase. Thus less pectins were extracted but their degree of methylation increased, indicative of products of lysis of pectin lyase. (2) Hemicelluloses extracted using NaOH (4 M) were more abundant in pectins when oxidised or oxidising procyanidins were complexed rather than non complexed to cell walls.  相似文献   

4.
A polygalacturonase inhibitor protein (PGIP) was characterized from tomato fruit. Differential glycosylation of a single polypeptide accounted for heterogeneity in concanavalin A binding and in molecular mass. Tomato PGIP had a native molecular mass of 35 to 41 kDa, a native isoelectric point of 9.0, and a chemically deglycosylated molecular mass of 34 kDa, suggesting shared structural similarities with pear fruit PGIP. When purified PGIPs from pear and tomato were compared, tomato PGIP was approximately twenty-fold less effective an inhibitor of polygalacturonase activity isolated from cultures of Botrytis cinerea. Based on partial amino acid sequence, polymerase chain reaction products and genomic clones were isolated and used to demonstrate the presence of PGIP mRNA in both immature and ripening fruit as well as cell suspension cultures. Nucleotide sequence analysis indicates that the gene, uninterrupted by introns, encodes a predicted 36.5 kDa polypeptide containing amino acid sequences determined from the purified protein and sharing 68% and 50% amino acid sequence identity with pear and bean PGIPs, respectively. Analysis of the PGIP sequences also revealed that they belong to a class of proteins which contain leucine-rich tandem repeats. Because these sequence domains have been associated with protein-protein interactions, it is possible that they contribute to the interaction between PGIP and fungal polygalacturonases.  相似文献   

5.
Polygalacturonic acid (PGA) was hydrolyzed by polygalacturonases (PGs) purified from six fungi. The oligogalacturonide products were analyzed by HPAEC-PAD (high performance anion exchange chromatography-pulsed amperimetric detection) to assess their relative amounts and degrees of polymerization. The abilities of the fungal PGs to reduce the viscosity of a solution of PGA were also determined. The potential abilities of four polygalacturonase-inhibiting proteins (PGIPs) from three plant species to inhibit or to modify the hydrolytic activity of the fungal PGs were determined by colorimetric and HPAEC-PAD analyses, respectively. Normalized activities of the different PGs acting upon the same substrate resulted in one of two distinct oligogalacturonide profiles. Viscometric analysis of the effect of PGs on the same substrate also supports two distinct patterns of cleavage. A wide range of susceptibility of the various PGs to inhibition by PGIPs was observed. The four PGs that were inhibited by all PGIPs tested exhibited an endo/exo mode of substrate cleavage, while the three PGs that were resistant to inhibition by one or more of the PGIPs proceed by a classic endo pattern of cleavage.  相似文献   

6.
The aim of this study was to quantify mucilages, pectins, hemicelluloses, and cellulose of nopalitos (edible, as vegetable, young cladodes of flat-stemmed spiny cacti) of most consumed Mexican cultivars, and sweet and acid cactus pear fruits of Opuntia spp. The hypothesis is that, regardless of their unavailable polysaccharides diversity, nopalitos and cactus pear fruits are rich sources of soluble and insoluble dietary fiber. Twelve cultivars of Opuntia spp. were used. Nopalitos had a significant variation in structural polysaccharides among the cultivars: mucilages (from 3.8 to 8.6% dry matter (DM)) averaged near a half of pectins content (from 6.1 to 14.2% DM) and tightly bound hemicelluloses (from 2.2 to 4.7% DM), which were the less abundant polysaccharides, amounted 50% of the loosely bound hemicelluloses (from 4.3 to 10.7% DM). Acid fruits (or 'xoconostle') had significantly higher unavailable polysaccharides content than sweet fruit, and contain similar proportions than nopalitos. Unavailable polysaccharides represent a high proportion of dry tissues of nopalitos and cactus pear fruits, composition of both of these soluble and insoluble polysaccharides (total dietary fiber) widely vary among cultivars without an evident pattern. Nopalitos and cactus pear fruit can be considered an excellent source of dietary fiber.  相似文献   

7.
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.  相似文献   

8.
F M Herr  D E Ong 《Biochemistry》1992,31(29):6748-6755
Esterification of retinol (vitamin A alcohol) with long-chain fatty acids by lecithin-retinol acyltransferase (LRAT) is an important step in both the absorption and storage of vitamin A. Retinol in cells is bound by either cellular retinol binding protein (CRBP), present in most tissues including liver, or cellular retinol binding protein type II [CRBP(II)], present in the absorptive cell of the small intestine. Here we investigated whether retinol must dissociate from these carrier proteins in order to serve as a substrate for LRAT by comparing Michaelis constants for esterification of retinol presented either free or bound. Esterification of free retinol by both liver and intestinal LRAT resulted in Km values (0.63 and 0.44 microM, respectively) similar to those obtained for esterification of retinol-CRBP (0.20 and 0.78 microM, respectively) and esterification of retinol-CRBP(II) (0.24 and 0.32 microM, respectively). Because Kd values for retinol-CRBP and retinol-CRBP(II) are 10(-8)-10-(-10) M, these similar Km values indicated prior dissociation is not required and that direct binding protein-enzyme interaction must occur. Evidence for such interaction was obtained when apo-CRBP proved to be a potent competitive inhibitor of LRAT, with a KI (0.21 microM) lower than the Km for CRBP-retinol (0.78 microM). Apo-CRBP(II), in contrast, was a poor competitor for esterification of retinol bound to CRBP(II). Apo-CRBP reacted with 4 mM p-(chloromercuri)benzenesulfonic acid lost retinol binding ability but retained the ability to inhibit LRAT, confirming that the inhibition could not be explained by a reduction in the concentration of free retinol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Analysis of the interaction of FtsZ with itself, GTP, and FtsA.   总被引:30,自引:9,他引:21       下载免费PDF全文
The interaction of FtsZ with itself, GTP, and FtsA was examined by analyzing the sensitivity of FtsZ to proteolysis and by using the yeast two-hybrid system. The N-terminal conserved domain consisting of 320 amino acids bound GTP, and a central region of FtsZ, encompassing slightly more than half of the protein, was cross-linked to GTP. Site-directed mutagenesis revealed that none of six highly conserved aspartic acid and asparagine residues were required for GTP binding. These results indicate that the specificity determinants for GTP binding are different than those for the GTPase superfamily. The N-terminal conserved domain of FtsZ contained a site for self-interaction that is conserved between FtsZ proteins from distantly related bacterial species. FtsZ320, which was truncated at the end of the conserved domain, was a potent inhibitor of division although it expressed normal GTPase activity and could polymerize. FtsZ was also found to interact directly with FtsA, and this interaction could also be observed between these proteins from distantly related bacterial species.  相似文献   

10.
As measured by fluorescence microscopy and radioligand binding, C3b/C4b receptors (CR1) became attached to the detergent-insoluble cytoskeleton of human neutrophils when receptors were cross-linked by affinity-purified polyclonal F(ab')2 anti-CR1, dimeric C3b, or Fab monoclonal anti-CR1 followed by F(ab')2 goat anti-mouse F(ab')2. CR1 on neutrophils bearing monovalent anti-CR1 was not attached to the cytoskeleton. In contrast, cross-linked CR1 on erythrocytes and cross-linked MHC Class I on neutrophils were not cytoskeleton associated. A possible role for filamentous actin (F-actin) in the binding of cross-linked CR1 to neutrophil cytoskeleton was suggested by three observations. When neutrophils were differentially extracted with either Low Salt-detergent buffer or High Salt-detergent buffer, stained with FITC-phalloidin, and examined by fluorescent flow cytometry, the residual cytoskeletons generated with the former buffer were shown to contain polymerized F-actin, whereas cytoskeletons generated with the latter buffer were found to be depleted of F-actin. In parallel experiments, High Salt-detergent buffer was also found to release cross-linked CR1 from neutrophils. Second, depolymerization of F-actin by DNAse I released half of the cytoskeletal-associated cross-linked CR1. Third, immunoadsorbed neutrophil CR1, but not MHC Class I or erythrocyte CR1, specifically bound soluble 125I-actin. In addition, Fc receptor and CR3, other phagocytic membrane proteins of neutrophils, specifically bound 125I-actin. These data demonstrate that CR1 cross-linked on neutrophils becomes associated with detergent-insoluble cytoskeleton and that this interaction is mediated either directly or indirectly by actin.  相似文献   

11.
Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein that inhibits fungal polygalacturonases (PGs) and retards the invasion of plant tissues by phytopathogenic fungi. Here, we report the interaction of two PGIP isoforms from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) with both polygalacturonic acid and cell wall fractions containing uronic acids. We identify in the three-dimensional structure of PvPGIP2 a motif of four clustered arginine and lysine residues (R183, R206, K230, and R252) responsible for this binding. The four residues were mutated and the protein variants were expressed in Pichia pastoris. The ability of both wild-type and mutated proteins to bind pectins was investigated by affinity chromatography. Single mutations impaired the binding and double mutations abolished the interaction, thus indicating that the four clustered residues form the pectin-binding site. Remarkably, the binding of PGIP to pectin is displaced in vitro by PGs, suggesting that PGIP interacts with pectin and PGs through overlapping although not identical regions. The specific interaction of PGIP with polygalacturonic acid may be strategic to protect pectins from the degrading activity of fungal PGs.  相似文献   

12.
A rapid method for the determination of the degrees of methylation (DM) and acetylation (DA) of pectins was developed. The polymer substitution degree as determined after saponification at 80 degrees C with NaOD during 1H NMR analysis. Under alkaline conditions, the cleavage of O-acetyl and O-methyl linkages allows the detection and the integration of the H-4 signal from galacturonic acid residues in the newly unesterified pectins. So, after a 10-min NMR recording, sodium acetate and sodium methanolate can be easily quantified relative to the clearly identified H-4 signal in galacturonic acid residues. Protons signals from pectin neutral sugars do not interfere with H-4. During the analysis, a limited (<3%) methanol evaporation leading to a weak reduced signal from the methanolate protons was observed. The proposed method allows in few minutes an accurate simultaneous quantification of DM and DA from few mg of pectin extracts, without the need of external standards.  相似文献   

13.
Polygalacturonases (PGs) are secreted by phytopathogenic fungi to degrade the plant cell wall homogalacturonan during plant infection. To counteract Pgs, plants have evolved polygalacturonase-inhibiting proteins (PGIPs) that slow down fungal infection and defend cell wall integrity. PGIPs favour the accumulation of oligogalacturonides, which are homogalacturonan fragments that act as endogenous elicitors of plant defence responses. We have previously shown that PGIP2 from Phaseolus vulgaris (PvPGIP2) forms a complex with PG from Fusarium phyllophilum (FpPG), hindering the enzyme active site cleft from substrate. Here we analyse by small angle X-ray scattering (SAXS) the interaction between PvPGIP2 and a PG from Colletotrichum lupini (CluPG1). We show a different shape of the PG-PGIP complex, which allows substrate entry and provides a structural explanation for the different inhibition kinetics exhibited by PvPGIP2 towards the two isoenzymes. The analysis of SAXS structures allowed us to investigate the basis of the inability of PG from Fusarium verticilloides (FvPG) to be inhibited by PvPGIP2 or by any other known PGIP. FvPG is 92.5% identical to FpPG, and we show here, by both loss- and gain-of-function mutations, that a single amino acid site acts as a switch for FvPG recognition by PvPGIP2.  相似文献   

14.
Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management.  相似文献   

15.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

16.
Fatty acid binding protein was purified from skeletal muscle of the spadefoot toad (Scaphiopus couchii), an estivating species. While estivating, this animal relies on the fatty acid oxidation for energy. Hence we were interested in the behaviour of fatty acid binding protein under conditions of elevated urea (up to 200 mM) and potassium chloride such as exist during estivation. Also we examined whether there were interactions between glycolytic intermediates and the binding ability of the protein. The amount of bound fatty acid (a fluorescence assay using cis-parinarate) was not affected (P < 0.05) by glucose, fructose 6-phosphate or phosphoenolpyruvate at physiological concentrations. By contrast, glucose 6-phosphate increased the amount of bound cis-parinarate but the apparent dissociation constant was not different from the control. Fructose 1,6-bisphosphate but not fructose 2,6-phosphate decreased cis-parinarate binding by 40%, commensurate with doubling the apparent dissociation constant (1.15-2.62 microM). Urea, guanidinium and trimethylamine N-oxide at 200 mM increased cis-parinarate binding 60% over controls. Urea (1 M) and KCl (200 mM) did not affect cis-parinarate binding compared to controls. The interaction of this fatty acid transporter with fructose 1,6-bisphosphate is discussed in terms of reciprocal interaction with phosphofructokinase since fatty acid is also an inhibitor of phosphofructokinase.  相似文献   

17.
《Carbohydrate research》1986,154(1):177-187
Pectins have been isolated from an ethanol-insoluble residue of sugar-beet pulp by sequential extraction with water, oxalate, hot dilute acid, andcold dilute alkali in yields of 2.2, 0.53, 20, and 11%, respectively. They were purified by chromatography on DEAE-cellulose at pH 4.8,or by precipitation with copper sulphate (alkali-soluble pectin). The pectins had fairly low molecular weights, a high degree of acetylation, and relatively high contents of neutral sugars, but there were clear differences beteen the four fractions. The main neutral sugars in each pectin were arabinose and galactose, and rhamnose, fucose, xylose, mannose, and glucose were also present. The fractions were homogeneous in ion-exchange and gel-filtration chromatography. Polyphenols (1–2%) and possibly proteins (3–6%) were associated with the purified pectins. In addition, feruloyl groups (up to 0.6%) were linked mainly to the acid-soluble and alkali-soluble pectins.  相似文献   

18.
L M Abell  J J Villafranca 《Biochemistry》1991,30(25):6135-6141
A number of slow tight-binding inhibitors are known for glutamine synthetase that resemble the geometry of the tetrahedral intermediate formed during the enzyme-catalyzed condensation of gamma-glutamyl phosphate and ammonia. One of these inhibitors, phosphinothricin [L-2-amino-4-(hydroxymethyl-phosphinyl)butanoic acid], has been investigated by rapid kinetic methods. Phosphinothricin not only exhibits the kinetic properties of a slow tight-binding inhibitor but also undergoes phosphorylation during the course of the ATP-dependent inactivation. The acid lability of phosphinothricin phosphate enabled investigation of the kinetics of glutamine synthetase inactivation using rapid quench kinetic techniques. The rate-limiting step in the inhibition reaction is the binding of inhibitor (0.004-0.014 microM-1 s-1) and/or a conformational change associated with binding, which is several orders of magnitude slower than the binding of ATP. The association rate of phosphinothricin depends on which metal ion is bound to the enzyme (Mn2+ or Mg2+). With Mn2+ bound to glutamine synthetase the rate of association and the phosphorylation rate are faster than when Mg2+ is bound. The data are interpreted with use of a model in which the binding of a substrate analogue with a tetrahedral moiety enhances the phosphorylation rate of the reaction intermediate; however, the initial binding interaction is retarded because the enzyme has to bind a molecule that has a "transition-state" geometry rather than a ground-state substrate structure. During the course of the inactivation, progressively slower rates for binding and phosphoryl transfer were observed, indicating communication between active sites.  相似文献   

19.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

20.
We used the expression of chimeric proteins and point mutants to identify amino acids of the hepatic progesterone 21-hydroxylase P450IIC5 which are part of an epitope recognized by an inhibitory monoclonal antibody and which affect substrate binding. Three amino acids of P450IIC5 at positions 113, 115, and 118 were introduced into P450IIC4, which is 95% identical to P450IIC5. The resultant chimeric protein acquired binding of the monoclonal antibody 1F11, which is highly specific and inhibitory for P450IIC5. Point mutants in P450IIC4 showed that two of the three changes, T115S and N118K, contribute to the epitope recognized by this antibody. The T115S mutant bound the antibody weakly (Kd greater than 30 nM) whereas the N118K mutant bound the antibody as tightly as P450IIC5 (Kd less than or equal to 0.7 nM). Thus, residues 115 and 118 are located on the surface of these enzymes, and the Lys/Asn difference at amino acid 118 is largely responsible for the high degree of discrimination which this antibody exhibits between P450IIC5 and P450IIC4. The valine to alanine mutation at position 113 conferred to P450IIC4 a lower apparent Km for progesterone 21-hydroxylation. Because antibody binding was not affected by this mutation, it is tempting to speculate that this residue is buried in the protein where it exerts its effect on the catalytic activity by interaction with the substrate or alters the positions of residues of the active site. The close proximity of the epitope at positions 115 and 118 to Ala113 suggests that the inhibitory monoclonal antibody interferes with substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号