共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer‐aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. 相似文献
3.
Copper uptake by whole cells and protoplasts of a wild-type and copper-resistant strain of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Abstract A stable copper-resistant mutant of Saccharomyces cerevisiae took up less copper than the wild-type. The use of protoplasts showed that the decreased uptake depended on changed membrane transport properties and not on alterations in the cell wall. 相似文献
4.
Aims: Adenosine triphosphate (ATP) during the enzymatic production of glutathione is necessary. In this study, our aims were to investigate the reason for low glutathione production in Escherichia coli coupled with an ATP regeneration system and to develop a new strategy to improve the system. Methods and Results: Glutathione can be synthesized by enzymatic methods in the presence of ATP and three precursor amino acids (l ‐glutamic acid, l ‐cysteine and glycine). In this study, glutathione was produced from E. coli JM109 (pBV03) coupled with an ATP regeneration system, by using glycolytic pathway of Saccharomyces cerevisiae WSH2 as ATP regenerator from adenosine and glucose. In the coupled system, adenosine used for ATP regeneration by S. cerevisiae WSH2 was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03). As a consequence, S. cerevisiae WSH2 could not obtain enough adenosine for ATP regeneration in the glycolytic pathway in spite of consuming 400 mmol l?1 glucose within 1 h. By adding adenosine deaminase inhibitor to block the metabolism from adenosine to hypoxanthine, glutathione production (8·92 mmol l?1) enhanced 2·74‐fold in the coupled system. Conclusions: This unusual phenomenon that adenosine was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03) revealed that less glutathione production in the coupled ATP regeneration system was because of the poor efficiency of ATP generation. Significance and Impact of the Study: The results presented here provide a strategy to improve the efficiency of the coupled ATP regeneration system for enhancing glutathione production. The application potential can be microbial processes where ATP is needed. 相似文献
5.
Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Buziol S Becker J Baumeister A Jung S Mauch K Reuss M Boles E 《FEMS yeast research》2002,2(3):283-291
We have investigated the role and the kinetic properties of the Hxt5 glucose transporter of Saccharomyces cerevisiae. The HXT5 gene was not expressed during growth of the yeast cells in rich medium with glucose or raffinose. However, it became strongly induced during nitrogen or carbon starvation. We have constructed yeast strains constitutively expressing only Hxt5, Hxt1 (low affinity) or Hxt7 (high affinity), but no other glucose transporters. Aerobic fed-batch cultures at quasi steady-state conditions, and aerobic and anaerobic chemostat cultures at steady-state conditions of these strains were used for estimation of the kinetic properties of the individual transporters under in vivo conditions, by investigating the dynamic responses of the strains to changes in extracellular glucose concentration. The K(m) value and the growth properties of the HXT5 single expression strain indicate that Hxt5 is a transporter with intermediate affinity. 相似文献
6.
The fluorescent glucose analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), was used to measure rates of glucose uptake by single Escherichia coli cells. When cell populations were exposed to the glucose analog, 2-NBDG was actively transported and accumulated in single cells to a steady-state level that depended upon its extracellular concentration, the glucose transport capacity of the cells, and the intracellular degradation rate. The dependence upon substrate concentration could be described according to Michaelis-Menten kinetics with apparent saturation constant KM = 1.75 microM, and maximum 2-NBDG uptake rate= 197 molecules/cell-second. Specificity of glucose transporters to the analog was confirmed by inhibition of uptake of 2-NBDG by D-glucose, 3-o-methyl glucose, and D-glucosamine, and lack of inhibition by L-glucose. Inhibition of 2-NBDG uptake by D-glucose was competitive in nature. The assay for 2-NBDG uptake is extremely sensitive such that the presence of even trace amounts of D-glucose in the culture medium (approximately 0.2 microM) is detectable. The rates of single-cell analog uptake were found to increase proportionally with cell size as measured by microscopy or single-cell light scattering intensity. The assay was used to identify and isolate mutant cells with altered glucose uptake characteristics. A mathematical model was developed to provide a theoretical basis for estimating single-cell glucose uptake rates from single-cell 2-NBDG uptake rates. The assay provides a novel means of estimating the instantaneous rates of nutrient depletion in the growth environment during a batch cultivation. 相似文献
7.
Some strains of Saccharomyces cerevisiae have detectable activities of L-serine O-acetyltransferase (SATase) and O-acetyl-L-serine/O-acetyl-L-homoserine sulfhydrylase (OAS/OAH-SHLase), but synthesize L-cysteine exclusively via cystathionine by cystathionine beta-synthase and cystathionine gamma-lyase. To untangle this peculiar feature in sulfur metabolism, we introduced Escherichia coli genes encoding SATase and OAS-SHLase into S. cerevisiae L-cysteine auxotrophs. While the cells expressing SATase grew on medium lacking L-cysteine, those expressing OAS-SHLase did not grow at all. The cells expressing both enzymes grew very well without L-cysteine. These results indicate that S. cerevisiae SATase cannot support L-cysteine biosynthesis and that S. cerevisiae OAS/OAH-SHLase produces L-cysteine if enough OAS is provided by E. coli SATase. It appears as if S. cerevisiae SATase does not possess a metabolic role in vivo either because of very low activity or localization. For example, S. cerevisiae SATase may be localized in the nucleus, thus controlling the level of OAS required for regulation of sulfate assimilation, but playing no role in the direct synthesis of L-cysteine. 相似文献
8.
The steady-state residual glucose concentrations in aerobic chemostat cultures of Saccharomyces cerevisiae ATCC 4126, grown in a complex medium, increased sharply in the respiro-fermentative region, suggesting a large increase in the apparent ks value. By contrast, strain CBS 8066 exhibited much lower steady-state residual glucose concentrations in this region. Glucose transport assays were conducted with these strains to determine the relationship between transport kinetics and sugar assimilation. With strain CBS 8066, a high-affinity glucose uptake system was evident up to a dilution rate of 0.41 h–1, with a low-affinity uptake system and high residual glucose levels only evident at the higher dilution rates. With strain ATCC 4126, the high-affinity uptake system was present up to a dilution rate of about 0.38 h–1, but a low-affinity uptake system was discerned already from a dilution rate of 0.27 h–1, which coincided with the sharp increase in the residual glucose concentration. Neither of the above yeast strains had an absolute vitamin requirement for aerobic growth. Nevertheless, in the same medium supplemented with vitamins, no low-affinity uptake system was evident in cells of strain ATCC 4126 even at high dilution rates and the steady-state residual glucose concentration was much lower. The shift in the relative proportions of the high and low-affinity uptake systems of strain ATCC 4126, which might have been mediated by an inositol deficiency through its effect on the cell membrane, may offer an explanation for the unusually high steady-state residual glucose concentrations observed at dilution rates above 52% of the wash-out dilution rate. 相似文献
9.
A kinetic model for glucose and xylose co-substrate uptake in Saccharomyces cerevisiae is presented. The model couples the enzyme kinetics with the glucose-dependent genetic expression of the individual transport proteins. This novel approach implies several options for optimizing the co-substrate utilization. Interestingly, the simulations predict a maximum xylose uptake rate at a glucose concentration >0 g/L, which suggests that the genetic expressions of the considered transport proteins are of importance when optimizing the xylose uptake. This was also evident in fed-batch simulations, where a distinct optimal glucose addition rate >0 g/L x h was found. Strategies for improving the co-substrate utilization by genetic engineering of the transport systems are furthermore suggested based on simulations. 相似文献
10.
Reduction of acetate excretion using a modified cellular glucose uptake rate was examined. An Escherichia coli strain bearing a mutationin ptsG, a gene encoding enzyme II in glucose phosphotransferase system (PTS), was constructed and characterized. The growth rate of the mutant strain was slower than its parent in glucose defined medium, butwas not affected in complex medium. Experimental results using this mutant strain showed a significant improvement in culture performance in simple batch cultivations due to reduced acetate excretion through the modified glucose uptake. Both biomass and recombinant protein productivity were increased by more than 50% with the ptsG mutant when compared to the parent strain. Recombinant protein productivity by the newly constructed strain at a level of more than 1.6 g/L was attained consistently in a simple batch bioreactor. (c) 1994 John Wiley & Sons, Inc. 相似文献
11.
The yeast glucose transporters Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 and Gal2, individually expressed in an hxt1-7 null mutant strain, demonstrate the phenomenon of countertransport. Thus, these transporters, which are the most important glucose transporters in Saccharomyces cerevisiae, are facilitated diffusion transporters. Apparent K(m)-values from high to low affinity, determined from countertransport and initial-uptake experiments, respectively, are: Hxt6 0.9+/-0.2 and 1.4+/-0.1 mM, Hxt7 1.3+/-0.3 and 1.9+/-0.1 mM, Gal2 1.5 and 1.6+/-0.1 mM, Hxt2 2.9+/-0.3 and 4.6+/-0.3 mM, Hxt4 6.2+/-0.5 and 6.2+/-0.3 mM, Hxt3 28.6+/-6.8 and 34.2+/-3.2 mM, and Hxt1 107+/-49 and 129+/-9 mM. From both independent methods, countertransport and initial uptake, the same range of apparent K(m)-values was obtained for each transporter. In contrast to that in human erythrocytes, the facilitated diffusion transport mechanism of glucose in yeast was symmetric. Besides facilitated diffusion there existed in all single glucose transport mutants, except for the HXT1 strain, significant first-order behaviour. 相似文献
12.
Juan Carlos Aon Miguel A. Aon John F.T. Spencer Sonia Cortassa 《Antonie van Leeuwenhoek》1997,72(4):283-290
Quantitative studies of metabolic fluxes during Saccharomyces cerevisiae sporulation on acetate in the presence of the glucose analog, 2-deoxy glucose (2dG) are reported. We have studied the inhibition of sporulation and associated catabolic or anabolic fluxes by 2dG. Sporulation frequencies decreased from 50% to 2% asci per cell at 2dG concentrations in the range of 0.03 to 0.30 g l>-1, respectively. Under the same conditions, the acetate consumption flux was inhibited up to 60% and the glyoxylate cycle and gluconeogenic fluxes decreased from 0.7 and 0.3 mmol h>-1 g>-1 dw, respectively, to negligible values. We observed a linear correlation of the acetate consumption rate with the sporulation frequency by varying the 2dG concentration. The linear correlation was also verified between the frequency of sporulation and the fluxes through glyoxylate cycle and gluconeogenic pathways. In addition, the same association of inhibition of sporulation and metabolic fluxes was found in other S. cerevisiae strains displaying different potentials of sporulation. The results presented suggest that inhibition of sporulation in the presence of the glucose analog may be attributed, at least in part, to the inhibition of anabolic fluxes and might be associated with catabolite repression. 相似文献
13.
Ulrich Schroeder Bernhard Henrich Jürgen Fink Roland Plapp 《FEMS microbiology letters》1994,123(1-2):153-159
Abstract Peptidase D of Escherichia coli was overproduced from a multicopy plasmid and purified to electrophoretic homogeneity. The pure enzyme was stable at 4°C or −20°C and had a pH optimum at pH 9, and a p I of 4.7; the temperature optimum was at 37°C. As the enzyme was activated by Co2+ and Zn2+ , and deactivated by metal chelators, it appears to be a metallopeptidase. By activity staining of native gels, 11 dipeptides which are preferentially cleaved by peptidase D were identified. Peptidase D activity required dipeptide substrates with an unblocked amino terminus and the amino group in the α or β position. Non-protein amino acids and proline were not accepted in the C-terminal position, whereas some dipeptide amides and formyl amino acids were hydrolyzed. K m values of 2 to 5 mM indicate a relatively poor interaction of the enzyme with its substrates. 相似文献
14.
We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting
supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both
high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose
consumption rate is not a regulating factor in microcin B17 formation. Journal of Industrial Microbiology & Biotechnology (2001) 26, 341–344.
Received 25 September 2000/ Accepted in revised form 16 April 2001 相似文献
15.
Abstract Ethanol at concentrations above 12% (v/v) in mineral medium with glucose and with ammonium as the only nitrogen source induced rapid inactivation of the ammonium transport system in the strain IGC 3507 of Saccharomyces cerevisiae terminating protein synthesis. Subsequently, when glucose was present, the glucose transport system was irreversibly inactivated. This two-step mechanism may play a decisive role when ethanol stops fermentation by S. cerevisiae , before all the fermentable sugar has been consumed. 相似文献
16.
The essentiality of iodine for humans, especially in the early stages of life, is well recognized. The chemical forms of iodine in food supplements, infant formulae and iodated salt are either iodide (KI) or iodate (KIO3 ). Because there are no or rare data about iodine uptake by yeasts, we investigated the influence of different sources of iodine, as KI, KIO3 and periodate (KIO4 ), on its uptake in and growth of the model yeast Saccharomyces cerevisiae . KIO3 inhibited the growth of the yeast the most and already at a 400 μM initial concentration in the growth medium; the OD was reduced by 23% in comparison with the control, where no KIO3 was added. The uptake of different iodine sources by the yeast S. cerevisiae was minimal, in total <1%. Tracer experiments with radioactive 131 I added as KI showed that the yeast S. cerevisiae does not have the ability to transform KI into volatile species. We investigated the specificity of iodine uptake added as KIO3 in the presence of Na2 SeO4 or ZnCl2 or K2 CrO4 in the growth medium, and it was found that chromate had the most influence on reduction of KIO3 uptake. 相似文献
17.
Jacky L. Snoep Mark R. de Graef Adrie H. Westphal Arie de Kok M. Joost Teixeira de Mattos Oense M. Neijssel 《FEMS microbiology letters》1993,114(3):279-283
Abstract The effect of NADH on the activity of the purified pyruvate dehydrogenase complexes (PDHc) of Enterococcus (Ec.) faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli was determined in vitro. It was found that the PDHc of E. coli and L. lactis was active only at relatively low NADH/NAD ratios, whereas the PDHc of Ec. faecalis was inhibited only at high NADH/NAD ratios. The PDHc of Azotobacter vinelandii showed an intermediate sensitivity. The organisms were grown in chemostat culture under conditions that led to different intracellular NADH/NAD ratios and the PDHc activities in vivo could be calculated from the specific rates of product formation. Under anaerobic growth conditions, only Ec. faecelis expressed PDHc activity in vivo. The activities in vivo of the complexes of the different organisms were in good agreement with their properties determined in vitro. The physiological consequences of these results are discussed. 相似文献
18.
Genes encoding transporters for heterologous siderophores have been identified in Saccharomyces cerevisiae, of which SIT1, TAF1, and ENB1 encode the transporters for ferrioxamines, ferric triacetylfusarinine C and ferric enterobactin, respectively. In the present communication we have shown that a further gene encoding a member of the major facilitator superfamily, ARN1 (YHL040c), is involved in the transport of a specific class of ferrichromes, possessing anhydromevalonyl residues linked to N(delta)-ornithine (ARN). Ferrirubin and ferrirhodin, which both are produced by filamentous fungi, are the most common representatives of this class of ferrichromes. A strain possessing a disruption in the ARN1 gene was unable to transport ferrirubin, ferrirhodin and also ferrichrome A, indicating that the encoded transporter recognizes anhydromevalonyl and the structurally-related methylglutaconyl side-chains surrounding the iron center. Ferrichromes possessing short-chain ornithine-N(delta)-acetyl residues such as ferrichrome, ferricrocin and ferrichrysin, were excluded by the Arn1 transporter. Substitution of the iron-surrounding N-acyl chains of ferrichromes by propionyl residues had no effect, whereas substitution by butyryl residues led to recognition by the Arn1 transporter. This would indicate that a chain length of four C-atoms is sufficient to allow binding. Using different asperchromes (B1, D1) we also found that a minimal number of two anhydromevalonyl residues is sufficient for recognition by Arn1p. Contrary to the iron-surrounding N-acyl residues, the peptide backbone of ferrichromes was not an important determinant for the Arn1 transporter. 相似文献
19.
Abstract Haemagglutination of enterotoxigenic Escherichia coli (ETEC) possessing F41 fimbriae was found to be inhibited by N -acetylgalactosamine. Other monosaccharides, such as N -acetylglucosamine, galactose and fucose were also inhibitors, although less effective than N -acetylgalactosamine. Purified F41 fimbriae bound to glycoproteins of human erythrocytes and glycophorin was found to act as an erythrocyte receptor for F41. 相似文献
20.
Abstract Glutamate uptake in the Gram-positive Corynebacterium glutamicum is mediated via a binding protein-dependent transport system, which is encoded by the gluABCD gene cluster. Cloning of these genes in an expression vector and subsequent transformation of the resulting plasmid allows different strains of the Gram-negative bacterium Escherichia coli to grow on glutamate as sole carbon and nitrogen source. However, overexpression of the glutamate uptake system results in growth inhibitory effects, probably due to the particular topology of the binding protein. 相似文献