首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-kappaB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2-6 h. Effects on Bcl10, phospho-IkappaBalpha, NF-kappaB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-kappaB, IkappaBalpha, and IL-8 were significantly reduced (P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-kappaB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-kappaB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention.  相似文献   

2.
Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.  相似文献   

3.
4.
Intestinal epithelial cells (IEC) are constantly exposed to both high concentrations of the bacterial ligand LPS and the serine protease trypsin. MD-2, which contains multiple trypsin cleavage sites, is an essential accessory glycoprotein required for LPS recognition and signaling through TLR4. The aim of this study was to characterize the expression and subcellular distribution of intestinal epithelial MD-2 and to delineate potential functional interactions with trypsin and then alteration in inflammatory bowel disease (IBD). Although MD-2 protein expression was minimal in primary IEC of normal colonic or ileal mucosa, expression was significantly increased in IEC from patients with active IBD colitis, but not in ileal areas from patients with severe Crohn's disease. Endogenous MD-2 was predominantly retained in the calnexin-calreticulin cycle of the endoplasmic reticulum; only a small fraction was exported to the Golgi. MD-2 expression correlated inversely with trypsin activity. Biochemical evidence and in vitro experiments demonstrated that trypsin exposure resulted in extensive proteolysis of endogenous and soluble MD-2 protein, but not of TLR4 in IEC, and was associated with desensitization of IEC to LPS. In conclusion, the present study suggests that endoplasmic reticulum-associated MD-2 expression in IBD may be altered by ileal protease in inflammation, leading to impaired LPS recognition and hyporesponsiveness through MD-2 proteolysis in IEC, thus implying a physiologic mechanism that helps maintain LPS tolerance in the intestine.  相似文献   

5.
The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS and peptidoglycan on beta-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of beta-defensin-2 was assessed using promoter-reporter constructs of the human beta-defensin-2 gene. LPS and peptidoglycan stimulated beta-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-kappaB or AP-1 site within the beta-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of beta-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide beta-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora.  相似文献   

6.
7.
Airway epithelial cells are unresponsive to endotoxin (lipopolysaccharide (LPS)) exposure under normal conditions. This study demonstrates that respiratory syncytial virus (RSV) infection results in increased sensitivity to this environmental exposure. Infection with RSV results in increased expression of Toll-like receptor (TLR) 4 mRNA, protein, and increased TLR4 membrane localization. This permits significantly enhanced LPS binding to the epithelial monolayer that is blocked by disruption of the Golgi. The increased TLR4 results in an LPS-induced inflammatory response as demonstrated by increased mitogen-activated protein (MAP) kinase activity, IL-8 production, and tumor necrosis factor alpha production. RSV infection also allowed for tumor necrosis factor alpha production subsequent to TLR4 cross-linking with an immobilized antibody. These data suggest that RSV infection sensitizes airway epithelium to a subsequent environmental exposure (LPS) by altered expression and membrane localization of TLR4. The increased interaction between airway epithelial cells and LPS has the potential to profoundly alter airway inflammation.  相似文献   

8.
9.
Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-kappaB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-alpha gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD-2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the LPS-tolerant phenotype.  相似文献   

10.
Local IGF-I expression is frequently increased in intestinal mesenchyme during adaptive growth of intestinal epithelium, but paracrine growth effects of IGF-I in vivo are not defined. We tested whether overexpression of IGF-I in intestinal mesenchyme increases epithelial growth and if effects are distinct from known effects of circulating IGF-I. SMP8-IGF-I-transgenic (TG) mice overexpress IGF-I driven by an alpha-smooth muscle actin promoter. Mucosal and muscularis growth were assessed in the jejunum, ileum, and colon of SMP8-IGF-I-TG mice and wild-type littermates. Abundance of the SMP8-IGF-I transgene and IGF binding protein (IGFBP)-3 and -5 mRNAs was determined. Mucosal growth was increased in SMP8-IGF-I-TG ileum but not jejunum or colon; muscularis growth was increased throughout the bowel. IGFBP-5 mRNA was increased in SMP8-IGF-I-TG jejunum and ileum and was specifically upregulated in ileal lamina propria. Overexpression of IGF-I in intestinal mesenchymal cells has preferential paracrine effects on the ileal mucosal epithelium and autocrine effects on the muscularis throughout the bowel. Locally expressed IGF-I has distinct actions on IGFBP expression compared with circulating IGF-I.  相似文献   

11.
The Toll-like receptors (TLRs) allow mammalian intestinal epithelium to detect various microbes and activate innate immunity after infection. TLR2 and TLR4 have been identified in intestinal epithelial cells (IECs) as fundamental components of the innate immune response to bacterial pathogens, but the exact mechanism involved in control of TLR expression remains unclear. Polyamines are implicated in a wide variety of biological functions, and regulation of cellular polyamines is a central convergence point for the multiple signaling pathways driving different epithelial cell functions. The current study determined whether polyamines regulate TLR expression, thereby modulating intestinal epithelial barrier function. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine decreased levels of TLR2 mRNA and protein, whereas increased polyamines by ectopic overexpression of the ODC gene enhanced TLR2 expression. Neither intervention changed basal levels of TLR4. Exposure of normal IECs to low-dose (5 microg/ml) LPS increased ODC enzyme activity and stimulated expression of TLR2 but not TLR4, while polyamine depletion prevented this LPS-induced TLR2 expression. Decreased TLR2 in polyamine-deficient cells was associated with epithelial barrier dysfunction. In contrast, increased TLR2 by the low dose of LPS enhanced epithelial barrier function, which was abolished by inhibition of TLR2 expression with specific, small interfering RNA. These results indicate that polyamines are necessary for TLR2 expression and that polyamine-induced TLR2 activation plays an important role in regulating epithelial barrier function.  相似文献   

12.
Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent “first hit”, rendering IUGR intestine susceptible to further injury, infection, or inflammation.  相似文献   

13.
Bacterial flagellin has recently been identified as a ligand for Toll-like receptor 5 (TLR5). Human sites known to specifically express TLR5 include macrophages and gastric and intestinal epithelium. Because infection of intestinal epithelial cells with Salmonella leads to an active transport of flagellin to the subepithelial compartment in proximity to microvessels, we hypothesized that human intestinal endothelial cells functionally express TLR5, thus enabling an active inflammatory response upon binding of translocated flagellin. Endothelial expression of TLR5 in human macro- and microvascular endothelial cells was examined by RT-PCR, immunoblot analysis, and immunofluorescence. Endothelial expression of TLR5 in vivo was verified by immunohistochemistry. Endothelial modulation of ICAM-1 expression was quantitated using flow cytometry, and leukocyte transmigration in vitro was assessed by an endothelial transmigration assay. Epithelial-endothelial cellular interactions upon infection with viable Salmonella were investigated using a coculture system in vitro. We found that Salmonella-infected intestinal epithelial cells induce endothelial ICAM-1 expression in cocultured human endothelial cells. Both macro- (HUVEC) and microvascular endothelial cells derived from human skin (human dermal microvascular endothelial cell 1) and human colon (human intestinal microvascular endothelial cells) were found to express high constitutive amounts of TLR5 mRNA and protein. These findings were paralleled by strong immunoreactivity for TLR5 of normal human colonic microvessels in vivo. Furthermore, incubation of human dermal microvascular endothelial cells with flagellin from clinical isolates of Escherichia and Salmonella strains led to a marked up-regulation of ICAM-1, as well as to an enhanced leukocyte transendothelial cell migration. These results suggest that endothelially expressed TLR5 might play a previously unrecognized role in the innate immune response toward bacterial Ags.  相似文献   

14.
We had previously shown that ileal intraepithelial lymphocytes isolated from calves with cryptosporidiosis include significantly increased numbers of CD8+ T lymphocytes and activated CD4+ cells. These increases could result from redistribution of resident mucosal lymphocytes or from homing of peripheral T cells to ileal mucosa. To determine whether resident mucosal lymphocytes can redistribute to Cryptosporidium parvum-infected epithelium, oocysts were inoculated in vitro onto ileum explants taken from 1-2-wk-old noninfected calves. After 24 hr of incubation, the explants were collected and frozen in liquid nitrogen. Immunohistochemical analysis of T-lymphocyte subpopulations was performed on sections, and labeled lymphocytes adjacent to villous epithelial cells were counted. Compared with uninoculated explants, there was a statistically significant increase in the number of CD8+ T lymphocytes per 100 epithelial cells in oocyst-inoculated tissue. In addition, there were increased numbers of CD4+ T cells and activated (CD25+) lymphocytes adjacent to C. parvum-infected epithelium. These results show that resident mucosal T lymphocytes can accumulate at the epithelium during C. parvum infection.  相似文献   

15.
We investigated light and electron microscopic localization of ornithine transcarbamylase (OTC) in rat intestinal mucosa. In the immunoblotting assay of OTC-related protein, a single protein band with a molecular weight of about 36,500 is observed in extracts of liver and small intestinal mucosa but is not observed in those of stomach and large intestine. For light microscopy, tissue slices of the digestive system were embedded in Epon and stained by using anti-bovine OTC rabbit IgG and the immunoenzyme technique. For electron microscopy, slices of these and the liver tissues were embedded in Lowicryl K4M and stained by the protein A-gold technique. By light microscopy, the absorptive epithelial cells of duodenum, jejunum, and ileum stained positively for OTC, but stomach, large intestine, rectum, and propria mucosa of small intestine were not stained. Electron microscopy showed that gold particles representing the antigenic sites for OTC were confined to the mitochondrial matrix of hepatocytes and small intestinal epithelial cells. However, the enzyme was detected in mitochondria of neither liver endothelial cells, submucosal cells of small intestine, nor large intestinal epithelial cells. Labeling density of mitochondria in the absorptive epithelial cells of duodenum, jejunum, and ileum was about half of that in liver cells.  相似文献   

16.
Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.  相似文献   

17.
Cell-surface Toll-like receptors (TLRs) initiate innate immune responses, such as inducible nitric oxide synthase (iNOS) induction, to microorganisms' surface pathogens. TLR2 and TLR4 play important roles in gastric mucosa infected with Helicobacter pylori (H. pylori), which contains lipopolysaccharide (LPS) as a pathogen. The present study investigates their physiological roles in the innate immune response of gastric epithelial cells to H. pylori-LPS. Changes in the expression of iNOS, TLR2, and TLR4, as well as downstream activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-kappaB), were analyzed in normal mouse gastric mucosal GSM06 cells following stimulation with H. pylori-LPS and interferon-gamma. Specific inhibitors for mitogen-activated protein kinases, NF-kappaB, and small interfering RNA for TLR2 or TLR4 were employed. The immunohistochemistry of TLR2 was examined in human gastric mucosa. H. pylori-LPS stimulation induced TLR2 in GSM06 cells, but TLR4 was unchanged. TLR2 induction resulted from TLR4 signaling that propagated through extracellular signal-related kinase and NF-kappaB activation, as corroborated by the decline in TLR4 expression on small interfering RNA treatment and pretreatment with inhibitors. The induction of iNOS and the associated nitric oxide production in response to H. pylori-LPS stimulation were inhibited by declines in not only TLR4 but also TLR2. Increased expression of TLR2 was identified in H. pylori-infected human gastric mucosa. TLR4 signaling initiated by H. pylori-LPS and propagated via extracellular signal-regulated kinase and NF-kappaB activation induced TLR2 expression in gastric epithelial cells. Induced TLR2 cooperated with TLR4 to amplify iNOS induction. This positive correlation may constitute a mechanism for stimulating the innate immune response against various bacterial pathogens, including H. pylori-LPS.  相似文献   

18.
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF), bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs) are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC) lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line). PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.  相似文献   

19.
Toll-like receptor-4 (TLR4) and its signaling molecule interleukin-1 receptor-associated kinase (IRAK-1) play an important role in host defense and tissue inflammation. Intriguingly, systemic administration of lipopolysaccharide (LPS), the agonist for TLR4, confers a cardio-protective effect against ischemic injury. However, the mechanisms leading to the cardiac protection remain largely unknown. The present study was designed to investigate the role of TLR4 activation by LPS in protecting cardiomyocytes (CM) against apoptosis in an in vitro model of ischemia and to explore the downstream mechanisms leading to the protective effect. Incubation with LPS led to activation of IRAK-1 and protected CMs against serum deprivation (SD)-induced apoptosis as demonstrated by DNA laddering, histone-DNA fragment enzyme-linked immunosorbent assay, and activation of caspase-3. Phosphatidylinositol 3-kinase/Akt, extracellular signal-regulated kinase 1/2, and IkappaB kinase beta appear to contribute to the anti-apoptotic effect of LPS since the specific inhibitors, wortmannin, PD98059, and dominant negative IKKbeta transgene expression reversed the LPS effect. To assess whether LPS improves CM function, we examined intracellular Ca(2+) transients and cell shortening in single adult rat CMs. SD for 6 h dramatically inhibited Ca(2+) transients and CM contractility. LPS at 500 ng/ml significantly improved the [Ca(2+)](i) transients and enhanced contractility in control CMs as well as in CMs subjected to SD. Importantly, transient ischemia led to rapid activation of IRAK-1 in cultured CMs and in adult rat myocardium. Adenovirus-mediated transgene expression of IRAK-1 but not its kinase-deficient mutant IRAK-1(K239S) protected CMs against SD-induced apoptosis. Taken together, these data suggest an important role of TLR4 signaling via IRAK-1 in protecting against SD-induced apoptosis.  相似文献   

20.
The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum > duodenum > jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band ( approximately 70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [(3)H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na(+) and Cl(-); 2) inhibited ( approximately 50%) by the neuronal SERT inhibitor, fluoxetine (10 microM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号