首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deuterium and 13C isotope effects for the enzymic decarboxylation of oxalacetate showed that both deuterium- and 13C-sensitive steps in the reaction are partially rate limiting. A normal alpha-secondary effect of 1.2 per deuterium was calculated for the reaction in which pyruvate-d3 was the substrate, suggesting that the enolate of pyruvate was an intermediate in the reaction. The large normal alpha-secondary deuterium isotope effect of 1.7 when oxalacetate-d2 was the substrate suggests that the motions of the secondary hydrogens are coupled to that of the primary hydrogen during the protonation of the enolate of pyruvate. The reduction in the magnitude of the 13C isotope effect for the oxamate-dependent decarboxylation of oxalacetate from 1.0238 to 1.0155 when the reaction was performed in D2O (primary deuterum isotope effect = 2.1) clearly indicates that the transfer of the proton and carboxyl group between biotin and pyruvate does not occur via a single concerted reaction. Mechanisms in which biotin is activated to react with CO2 (prior to transfer of the proton on N-1) by bond formation between the sulfur and the ureido carbon, or in which the sequence of events is decarboxylation of oxalacetate, proton transfer from biotin to enolpyruvate, and carboxylation of enolbiotin, predict that the 13C isotope effect in D2O should be substantially lower than the observed value. A stepwise mechanism that does fit the data is one in which a proton is removed from biotin by a sulfhydryl group on the enzyme prior to carboxyl transfer, as long as the sulfhydryl group has an abnormally low pK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A method has been developed for the positional 13C isotope analysis of pyruvate and acetate by stepwise quantitative degradation. On its base, the kinetic isotope effects on the pyruvate dehydrogenase reaction (enzymes from Escherichia coli and Saccharomyces cerevisiae) for both of the carbon atoms involved in the bond scission (double isotope effect determination) and on C-3 of pyruvate have been determined. The experimental k12/k13 values with the enzyme from E. coli on C-1 and C-2 of pyruvate are 1.0093 +/- 0.0007 and 1.0213 +/- 0.0017, respectively, and, with the enzyme from S. cerevisiae, the values are 1.0238 +/- 0.0013 and 1.0254 +/- 0.0016, respectively. A secondary isotope effect of 1.0031 +/- 0.0009 on C-3 (CH3-group) was found with both enzymes. The size of the isotope on C-1 indicates that decarboxylation is more rate-determining with the yeast enzyme than with the enzyme from E. coli, although it is not the entirely rate-limiting step in the overall reaction sequence. Assuming appropriate values for the intrinsic isotope effect on the decarboxylation step (k3) and the equilibrium isotope effect on the reversible substrate binding (k1, k2), one can calculate values for the partitioning factor R (k3/k2: E. coli enzyme 4.67, S. cerevisiae enzyme 1.14) and the intrinsic isotope effects related to the carbonyl-C (k1/k'1 = 1.019; k3/k'3 = 1.033). The isotope fractionation at C-2 of pyruvate gives strong evidence that the well known relative carbon-13 depletion in lipids from biological material is mainly caused by the isotope effect on the pyruvate dehydrogenase reaction. In addition, our results indicate an alternating 13C abundance in fatty acids, that has already been verified in some cases.  相似文献   

3.
The decarboxylation of pyruvic acid by the thiamine pyrophosphate dependent pyruvate decarboxylase from brewer's yeast is accompanied by a carboxyl carbon isotope effect k12k13 = 1.0083±0.0003 at 25°, pH 6.8. The small size of the isotope effect indicates that decarboxylation is not rate-determining in the overall reaction. The rate constant for decarboxylation of the enzyme-bound pyruvate-thiamine pyrophosphate complex is greater by about a factor of five than the rate constant for dissociation of this complex to form free pyruvate and the enzyme-thiamine pyrophosphate complex.  相似文献   

4.
5.
6.
7.
Toxicity to the central nervous system (CNS) by hyperbaric oxygen (HBO) presumably relates to increased production of reactive oxygen species. The sites of generation of reactive oxygen species during HBO, however, have not been fully characterized in the brain. We investigated the relationship between regional generation of hydrogen peroxide (H2O2) in the brain in the presence of an irreversible inhibitor of catalase, aminotriazole (ATZ), and protection from CNS O2 toxicity by a monoamine oxidase (MAO) inhibitor, pargyline. At 6 ATA of oxygen, pargyline significantly protected rats from CNS O2 toxicity whereas ATZ enhanced O2 toxicity. In animals pretreated with ATZ, HBO inactivated 21-40% more catalase than air exposure in the six brain regions studied. Because ATZ-mediated inactivation of catalase was H2O2 dependent, the decrease in catalase activity during hyperoxia was proportional to the intracellular production of H2O2. Pargyline, administered 30 min before HBO, inhibited MAO by greater than 90%, prevented ATZ inhibition of catalase activity during HBO, and reversed the augmentation of CNS O2 toxicity by ATZ. These findings indicate that H2O2 generated by MAO during hyperoxia is important to the pathogenesis of CNS O2 toxicity in rats.  相似文献   

8.
9.
10.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

11.
12.
The abilities of insulin and the insulin mimickers spermine and H2O2 to stimulate 3-O-methyl glucose transport in isolated rat ft cells were stuided in an attempt to determine possible common mechanisms of action. All three agents caused a seven- to 12-fold stimulation of initial rates of glucose transport with insulin being the most effective agent. Insulin and spermine displayed similar time courses for the onset of their stimulation of transport; an initial lag before any effect was seen and then a gradual rise until the full effect was reached. The time course of H2O2 activation of glucose transport was different since stimulation was seen at the earliest time point tested and then gradually rose to the maximal effect. Trypsinization of cells removed insulin receptors and rendered the cells insensitive to insulin but not to spermine or H2O2. However, trypsinization did alter the time course of H2O2 action, causing an initial lag phase to appear and a general slowing of the activation kinetics. Pretreatment of cells with 2,4-dinitrophenol to lower ATP levels prevented the stimulatory effects of insulin and the mimickers. All three of the agents revealed a similar temperature dependency for stimulated glucose transport, resulting in linear Arrhenius plots with activation energies of 10.2–11.4 kcal/mole. These results show that (1) H2O2 does not act directly on the glucose transport system of rat adipocytes and (2) insulin and H2O most likely act through a common energy-dependent biochemical pathway to stimulate glucose transport, but H2O2 enters the stimulus-response sequence distal to the initial steps in insulin action.  相似文献   

13.
14.
Gadda G  Fitzpatrick PF 《Biochemistry》2000,39(6):1406-1410
Nitroalkane oxidase catalyzes the oxidation of nitroalkanes to aldehydes or ketones with production of nitrite and hydrogen peroxide. pH and kinetic isotope effects with [1, 1-(2)H(2)]nitroethane have been used to study the mechanism of this enzyme. The V/K(ne) pH profile is bell-shaped. A group with a pK(a) value of about 7 must be unprotonated and one with a pK(a) value of 9.5 must be protonated for catalysis. The lower pK(a) value is seen also in the pK(is) profile for the competitive inhibitor valerate, indicating that nitroethane has no significant external commitments to catalysis. The (D)(V/K)(ne) value is pH-independent with a value of 7.5, whereas the (D)V(max) value increases from 1.4 at pH 8.2 to a limiting value of 7.4 below pH 5. The V(max) pH profile decreases at low and high pH, with pK(a) values of 6.6 and 9.5, respectively. Imidazole, which activates the enzyme, affects the V(max) but not the V/K(ne) pH profile. In the presence of imidazole at pH 7 the (D)V(max) value increases to a value close to the intrinsic value, consistent with cleavage of the carbon-hydrogen bond of the substrate being fully rate-limiting for catalysis in the presence of imidazole.  相似文献   

15.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

16.
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed.  相似文献   

17.
The pyruvate dehydrogenase from Escherichia coli showed a primary kinetic isotope effect when its overall reaction or the partial reaction of the pyruvate dehydrogenase component were tested in deuterium oxide. The Michaelis constants for pyruvate were nearly unchanged, but the maximum velocities in water and deuterium oxide differed, their ratio being DV = 1.7 for the overall reaction and DV = 2.1 for the E1p reaction. The pH profile and, accordingly, the delta pK1 and delta pK2 values were shifted by 0.6 units to higher pL values. A linear proton inventory curve was obtained when varying the atom fractions of protons relative to deuterons from 100 to 0%. This is an indication for a single proton transfer. It is proposed that this relatively weak primary isotope effect may be caused by the protonation of the N1' nitrogen at the pyrimidine ring of the cofactor by an adjacent glutamate residue. The proton of its carboxylic group exchanges very fast with deuterons of the solvent.  相似文献   

18.
The kinetics of degradation of DNA and RNA by H 2 O 2   总被引:11,自引:0,他引:11  
  相似文献   

19.
Ralph EC  Fitzpatrick PF 《Biochemistry》2005,44(8):3074-3081
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of secondary amino acids such as N-methyltryptophan or N-methylglycine (sarcosine). MTOX is one of several flavin-dependent amine oxidases whose chemical mechanism is still debated. The kinetic properties of MTOX with the slow substrate sarcosine were determined. Initial rate data are well-described by the equation for a ping-pong kinetic mechanism, in that the V/K(O)()2 value is independent of the sarcosine concentration at all accessible concentrations of oxygen. The k(cat)/K(sarc) pH profile is bell-shaped, with pK(a) values of 8.8 and about 10; the latter value matches the pK(a) value of the substrate nitrogen. The k(cat) pH profile exhibits a single pK(a) value of 9.1 for a group that must be unprotonated for catalysis. There is no significant solvent isotope effect on the k(cat)/K(sarc) value. With N-methyl-(2)H(3)-glycine as the substrate, there is a pH-independent kinetic isotope effect on k(cat), k(cat)/K(sarc), and the rate constant for flavin reduction, with an average value of 7.2. Stopped-flow spectroscopy with both the protiated and deuterated substrate failed to detect any intermediates between the enzyme-substrate complex and the fully reduced enzyme. These results are used to evaluate proposed chemical mechanisms.  相似文献   

20.
1. Isotope effects on the catalytic activity of benzylamine oxidase at pH 7 and 9 have been studied by steady-state and transient-state kinetics methods, using [alpha,alpha-2H]benzylamine as the substrate. 2. Replacement of the alpha-hydrogen atoms in benzylamine by deuterium has no significant effect on substrate-binding to benzylamine oxidase, neither does it affect the rate of reoxidation of the reduced form of the enzyme. Conversion of the primarily formed enzyme-substrate complex into the reduced enzyme species, however, exhibits an isotope effect of about 3. 3. The data obtained are consistent with a mechanism in which reduction of benzylamine oxidase takes place by a rapid pre-equilibration between enzyme and substrate to form an amine-pyridoxal Schiff-base, which is then tautomerized by a comparatively slow prototropic shift to an amino aldehyde-pyridoxamine Schiff-base from which there is a rapid hydrolytic release of the aldehyde product corresponding to the amine substrate. Proton abstraction from the alpha-carbon of the amine moiety in the primary Schiff-base appears to be at least partially rate-limiting for the tautomerization step, and hence for the entire process of enzyme reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号