首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Glutamate, a major excitatory amino acid neurotransmitter is also an endogenous excitotoxin. The present study examined the prolonged and delayed effects of glutamate excitotoxicity on mitochondrial lipid peroxidation and antioxidant parameters in different brain regions, namely, cerebral hemisphere, cerebellum, brain stem and diencephalon. Wistar rats (male) were exposed to monosodium glutamate (MSG) (4 mg × g body wt–1, i.p.) for 6 consecutive days and sacrificed on 30th and 45th day after last MSG dose. MSG treatment markedly decreased the mitochondrial manganese superoxide-dismutase (Mn-SOD), catalase and reduced glutathione (GSH) content, and increased the lipid peroxidation (LPx), uric acid and glutathione peroxidase (GPx) activity. These results indicate that oxidative stress produced by glutamate in vulnerable brain regions may persist for longer periods and mitochondrial function impairment is an important mechanism of excitatory amino acid mediated neurotoxicity in chronic neurodegeneration.  相似文献   

2.
N-Phthaloyl GABA was administrated daily (50 mg/kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied. N-Phthaloyl GABA was found to delay TBARS and to advance GSH, CAT and SOD acrophases. Amplitude and mesor values of these rhythms were found to be altered during N-Phthaloyl GABA treatment. Since GABA is hypothesized to be involved in conveying dark information to clock, exogenous administration of P-GABA might alter the photic information received by the clock. Our study shows that P-GABA administration alters the temporal patterns of lipid peroxidation and antioxidants in Wistar rats. But the exact mechanism remains to be explored and further research is needed.  相似文献   

3.
Temporal oscillations of circulatory thiobarbituric acid reactive substances (TBARS), antioxidants such as reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and glucose, cholesterol, total protein and aspartate transaminase (AST) were studied under LD (12:12 h) and constant light (LL) (500 lux) conditions after exposing the animal for 21 days. Advances in the acrophase of GSH, SOD, catalase, glucose, total protein and (AST) rhythms and delays in TBARS and cholesterol were found; amplitude and mesor values of these rhythms were found to be altered during constant light treatment. The above said circadian alterations during LL exposure may be due to (1) formation of photooxidants and stress mediated lipid peroxidation, suppression of melatonin (2) modulation of neuroendocrine and neurotransmitters rhythm (3) suppression of sleep - wake cycle (4) feeding and locomotion rhythm. The exact mechanism still remains to be explored and further research needed.  相似文献   

4.
The sodium salt of glutamate (monosodium glutamate; MSG) imparts a savory/meaty taste to foods, and has been used as a flavoring agent for millennia. Past research on MSG/glutamate has evaluated its physiologic, metabolic and behavioral actions, and its safety. Ingested MSG has been found to be safe, and to produce no remarkable effects, except on taste. However, some recent epidemiologic and animal studies have associated MSG use with obesity and aberrations in fat metabolism. Reported effects are usually attributed to direct actions of ingested MSG in brain. As these observations conflict with past MSG research findings, a symposium was convened at the 13th International Congress on Amino Acids, Peptides and Proteins to discuss them. The principal conclusions were: (1) the proposed link between MSG intake and weight gain is likely explained by co-varying environmental factors (e.g., diet, physical activity) linked to the “nutrition transition” in developing Asian countries. (2) Controlled intervention studies adding MSG to the diet of animals and humans show no effect on body weight. (3) Hypotheses positing dietary MSG effects on body weight involve results from rodent MSG injection studies that link MSG to actions in brain not applicable to MSG ingestion studies. The fundamental reason is that glutamate is metabolically compartmentalized in the body, and generally does not passively cross biologic membranes. Hence, almost no ingested glutamate/MSG passes from gut into blood, and essentially none transits placenta from maternal to fetal circulation, or crosses the blood–brain barrier. Dietary MSG, therefore, does not gain access to brain. Overall, it appears that normal dietary MSG use is unlikely to influence energy intake, body weight or fat metabolism.  相似文献   

5.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

6.
Administration of monosodium glutamate (MSG) during the neonatal period in rats produced differential effects on the contents of various neuropeptides in the hypothalamus: beta-endorphin (beta-E) level was reduced by 70% while substance P (SP), neurotensin (NT) and Met5-enkephalin (ME) levels were not significantly changed (ME content of male rats was slightly reduced). The contents of ME, SP and NT in striatum and hippocampus were also unaffected by the same treatment. Male rats contain higher pituitary content of beta-endorphin-like immunoreactivity (beta-ELI) than female rats. MSG treatment reduced the pituitary content of beta-ELI and abolished the sex difference in beta-ELI level seen in the control rats. MSG treatment in the neonates by eliminating beta-E neurons while sparing ME neurons in the brain may be a useful tool for studying the different functions of these two separate opioid peptides.  相似文献   

7.
Disorganized redox homeostasis is a main factor causing a number of diseases and it is imperative to comprehend the orchestration of circadian clock under oxidative stress in the organism, Drosophila melanogaster. This investigation analyses the influence of hesperidin on the circadian rhythms of lipid peroxidation products and antioxidants during rotenone-stimulated oxidative stress in fruit fly. The characteristics of rhythms of thiobarbituric acid reactive substances (TBARS), antioxidants (superoxide dismutase (SOD) and catalase (CAT)) were noticeably decreased in rotenone administered flies. Supplementation of hesperidin to rotenone-treated flies increased the mesor and modulated the amplitudes of antioxidants and conspicuously decreased the mesor values of TBARS. In addition, delays in acrophase in rotenone-induced flies were reversed by hesperidin treatment. Thus, treatment of hesperidin caused normalization of the altered rhythms. Disorganization of 24 h rhythms in markers of redox homeostasis was observed during rotenone treatment and the impairment is severe in circadian clock mutant (Cryb) flies. Reversibility of rhythms was prominent subsequent to hesperidin treatment in wild-type flies than (Cryb) flies. These observations denote a role of circadian clock in redox homeostasis and the use of Drosophila model in screening putative antioxidative phytomedicines prior to their usage in mammalian systems.  相似文献   

8.
Monosodium glutamate (MSG) was used to evaluate the importance of the arcuate nucleus of the hypothalamus in the expression of daily gonadotropin rhythms in female golden hamsters. These daily rhythms of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which also occur in prepubertal females, are characterized by afternoon surges. Neonatal administration of MSG induces degeneration of perikarya in the arcuate nucleus and renders females permanently anovulatory. MSG was injected at 8 days of age; at 21 days, the animals were weaned and sorted by sex into groups of 5-7. Blood samples were obtained at 1300 and 1700 h at 25, 30, 35, 40, 50, 62, and 192 days of age from MSG-sterilized animals. Saline-injected controls were bled at 25 days and after estrous cycles had been initiated (29-37 days of age). In both control and MSG-injected groups, there was an afternoon surge of LH and FSH at 25 days of age. These daily surges persisted in MSG-injected animals. The ovaries of these animals were characterized by an abundant interstitium and arrested follicular development. Progesterone levels of MSG-anovulatory animals also reflected the rhythmicity of LH and FSH, with a significant increase occurring between 1300 and 1700 h. Thus, MSG did not affect the daily circadian-based rhythmicity in gonadotropin secretion even though adult-age animals were infertile. These results suggest that perikarya of the arcuate nucleus affected by MSG are not required for generation of daily LH and FSH rhythms.  相似文献   

9.
The effect of chloroform: methanolic (80:20) extract of C. asiatica (CA; 100 and 200 mg/kg), was evaluated on the course of free radical generation and excitotoxicity in monosodiumglutamate (MSG) treated female Sprague Dawley rats. The extract showed significant improvement in catalase, super oxide desmutase and lipid peroxides levels in hippocampus and striatum regions. Glutathione level was not altered with CA treatment. Similar observation was made with dextromethorphan. The general behavior, locomotor activity and CAl a region of the hippocampus was significantly protected by CA indicating neuroprotective effect of CA in MSG induced excitotoxic condition. Hence it can be concluded that CA protected MSG induced neurodegeneration attributed to its antioxidant and behavioural properties. This activity of CA can be explored in epilepsy, stroke and other degenerative conditions in which the role of glutamate is known to play vital role in the pathogenesis.  相似文献   

10.
Adaptive response is the ability of an organism to better counterattack stress‐induced damage in response to a number of different cytotoxic agents. Monosodium L‐glutamate (MSG), the sodium salt of amino acid glutamate, is commonly used as a food additive. We investigated the effects of MSG on the life span and antioxidant response in Drosophila melanogaster (D. melanogaster). Both genders (1 to 3 days old) of flies were fed with diet containing MSG (0.1, 0.5, and 2.5‐g/kg diet) for 5 days to assess selected antioxidant and oxidative stress markers, while flies for longevity were fed for lifetime. Thereafter, the longevity assay, hydrogen peroxide (H2O2), and reactive oxygen and nitrogen species levels were determined. Also, catalase, glutathione S‐transferase and acetylcholinesterase activities, and total thiol content were evaluated in the flies. We found that MSG reduced the life span of the flies by up to 23% after continuous exposure. Also, MSG increased reactive oxygen and nitrogen species and H2O2 generations and total thiol content as well as the activities of catalase and glutathione S‐transferase in D. melanogaster (P < .05). In conclusion, consumption of MSG for 5 days by D. melanogaster induced adaptive response, but long‐term exposure reduced life span of flies. This study may therefore have public health significance in humans, and thus, moderate consumption of MSG is advocated by the authors.  相似文献   

11.
Monosodium glutamate (MSG) is added to many processed foods at significant levels for flavor enhancement. It is also naturally occurring at high levels in some foods. The enantiomeric composition of free glutamate in foods was examined and all foods analyzed were found to contain D -glutamate. The relative percent of D -glutamate in the food products studied depended on the origin of the glutamate. Foods to which MSG was added by the manufacturer had a high total level of MSG but a lower relative percentage of the D -enantiomer (usually less than 0.8%). In comparison, fermented foods tend to have high relative levels of D -glutamate but a lower total amount of the amino acid. The relative percent of D -glutamate in nonfermented foods containing no added MSG was also found to be low compared to fermented products. In some cases the percent D -glutamate could be related to the relative amounts of other food ingredients such as cheese. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Monosodium glutamate (MSG), the sodium salt of glutamate, is commonly used as a flavor enhancer in modern nutrition. Recent studies have shown the existence of glutamate receptors on lymphocytes, thymocytes and thymic stromal cells. In this study, we evaluated the in vitro effect of different MSG concentrations on rat thymocyte apoptosis and expression of two apoptosis-related proteins, Bcl-2 and Bax. Rat thymocytes, obtained from male Wistar rats, were exposed to increasing concentrations of MSG (ranging from 1 mM to 100 mM) for 24 h. Apoptosis was detected using the Annexin V-FITC/PI apoptosis detection kit and cells were analyzed using a flow cytometer. Expression of Bcl-2 and Bax proteins were determined with flow cytometry using respective monoclonal antibodies. Exposure to MSG resulted in a dose-dependent decrease in cell survival (as determined by trypan blue exclusion method). Annexin V-FITC/PI also confirmed that MSG increased, in a dose-dependent manner, apoptotic cell death in rat thymocyte cultures. MSG treatment induced downregulation of Bcl-2 protein, while Bax protein levels were not significantly changed. Our data showed that MSG significantly modulates thymocyte apoptosis rate in cultures. The temporal profile of Bcl-2 and Bax expression after MSG treatment suggests that downregulation of Bcl-2 protein and the resulting change of Bcl-2/Bax protein ratio may be an important event in thymocyte apoptosis triggered by MSG.  相似文献   

13.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

14.
Monosodium glutamate (MSG) produces neurodegeneration in several brain regions when it is administered to neonatal rats. From an early embryonic age to adulthood, GABA neurons appear to have functional glutamatergic receptors, which could convert them in an important target for excitotoxic neurodegeneration. Changes in the activity of the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), have been shown after different neuronal insults. Therefore, this work evaluates the effect of neonatal MSG treatment on GAD activity and kinetics in the cerebral cortex, striatum, hippocampus and cerebellum of the rat brain during postnatal development. Neonatal MSG treatment decreased GAD activity in the cerebral cortex at 21 and 60 postnatal days (PD), mainly due to a reduction in the enzyme affinity (K(m)). In striatum, the GAD activity and the enzyme maximum velocity (V(max)) were increased at PD 60 after neonatal MSG treatment. Finally, in the hippocampus and cerebellum, the GAD activity and V(max) were increased, but the K(m) was found to be lower in the experimental group. The results could be related to compensatory mechanisms from the surviving GABAergic neurons, and suggest a putative adjustment in the GAD isoform expression throughout the development of the postnatal brain, since this enzyme is regulated by the synaptic activity under physiological and/or pathophysiological conditions.  相似文献   

15.
Glutamate is central to several transamination reactions that affect the production of ammonia, alanine, glutamine, as well as TCA cycle intermediates during exercise. To further study glutamate metabolism, we administered 150 mg/kg body wt of monosodium glutamate (MSG) and placebo to seven male subjects who then either rested or exercised (15-min cycling at approximately 85% maximal oxygen consumption). MSG ingestion resulted in elevated plasma glutamate, aspartate, and taurine, both at rest and during exercise (P < 0.05), whereas most other amino acids were unchanged. Neither plasma alanine nor ammonia was altered at rest. During exercise and after glutamate ingestion, alanine was increased (P < 0.05) and ammonia was attenuated (P < 0.05). Glutamine was also elevated after glutamate ingestion during rest and exercise trials. MSG administration also resulted in elevated insulin levels (P < 0.05), which were parallel to the trend in C-peptide levels. Thus MSG can successfully elevate plasma glutamate, both at rest and during exercise. The plasma amino acid responses suggest that increased glutamate availability during exercise alters its distribution in transamination reactions within active muscle, which results in elevated alanine and decreased ammonia levels.  相似文献   

16.
Pesticides can have an effect on the biochemical and physiological functions of living organisms. The changes seen in fish and their response to pesticides can be used as an example for vertebrate toxicity. In this study, carp fish (Cyprinus carpio) were exposed to different concentrations of tebuconazol fungicide, by rice field (31.95 μg/L) and laboratory (33.47 and 36.23 μg/L) conditional testing, during a 7 day period. Parameters such thiobarbituric acid-reactive substance levels (TBARS), protein carbonyl, catalase, glutathione S-transferase and acetylcholinesterase activities were studied, using the liver, brain and white muscle of the fish. The field experiment showed that the TBARS levels were increased in all the analyzed tissues. Similarly, the protein carbonyl of the liver and the brain AChE activity increased after 7 days. The laboratory experiment demonstrated that the TBARS levels in the liver were increased in both of the concentration tests. TBARS levels in the muscle increased only by the lowest test concentration. On the other hand, the protein carbonyl was increased only by the highest concentration. The results indicate that the tebuconazol exposure from the field and laboratory conditions directly affected the health of the fish, showing the occurrence of oxidative stress.  相似文献   

17.
In the present study we examined immobilization stress-induced antioxidant defense changes in rat plasma and also observed the antioxidant effects of pre and post vitamins A, E and C administration (15 mg/Kg of body weight) individually and in combination (vit E + C) on these alterations.Following immobilization stress the circulating activities of superoxide dismutase, catalase and glutathione-S-transferase were decreased, while the level of thiobarbituric acid reactive substances (TBARS) was increased as compared to non-stressed control rats.Post treatment with individual vitamins A, E and C (after exposure to stress) resulted in a less marked alteration of plasma TBARS levels and activities of SOD, GST and catalase as compared to pre vitamin stress or stress alone treatments. Both pre and post vitamin treatments were effective in preventing stress induced derangement of free radical metabolism with a relative dominance by latter. The combined treatment with vitamin E and C did not show any additive antioxidant effect on restraint stress induced altered free radical metabolism, rather a predominant effect similar to vitamin E alone was observed. The prevention of oxidative stress generated in response to restraint stress by the vitamins can be summarized as: vitamin (E + C) i.e. vit E > vit C > vit A, thus combined vitamin (E + C) treatment though showed maximum preventive effect, but was similar to vitamin E treatment alone, in terms of the circulating activities of SOD, GST, catalase and TBARS levels.  相似文献   

18.
Peripheral administration of monosodium-L-glutamate (MSG) has been found to be neurotoxic in neonatal rats. When administered in an acute, subconvulsive dose (500 mg/kg i.p.), MSG altered neurotrnnsmitter content in discrete brain regions of adult (6 month old) and aged (24 month old) male Fischer-344 rats. Norepinephrine (NE) content was reduced in both the hypothalamus (16%) and cerebellum (11%) of adult rats, but was increased in both the hypothalamus (7%) and cerebellum (14%) of aged rats after MSG treatment. MSG also altered the dopamine content in adult rats in both the posterior cortex and the striatum, causing a reduction (23%) and an increase (12%), respectively. Glycine content in the midbrain of aged rats increased (21%) after MSG injection. Of particular interest is the widespread monoamine and amino acid deficits found in the aged rats in many of the brain regions examined. NE content was decreased (11%) in the cerebellum of aged rats. Dopamine content was reduced in both the posterior cortex (35%) and striatum (10%) of aged rats compared to adult animals. Cortical serotonergic deficits were present in aged rats with reductions in both the frontal (13%) and posterior cortex (21%). Aged rats also displayed deficits in amino acids, particularly the excitatory amino acids. There were glutamate deficits (9–18% reductions) in the cortical regions (posterior and frontal) as well as midbrain and brain stem. Aspartate, the other excitatory amino acid transmitter, was reduced 10% in the brainstem of aged rats. These data indicate that an acute, subconvulsive, dose of MSG may elicit neurochemical changes in both adult and aged male Fisher-344 rats, and that there are inherent age-related deficits in particular neurotransmitters in aged male Fisher-344 rats as indicated by the reductions in both monoamines and amino acids.  相似文献   

19.
The circadian timing system controls drug metabolism and cellular proliferation over the 24-h period through molecular clocks in every cell. Accumulating epidemiological and genetic evidences indicate that the disruption of circadian rhythms might be directly linked to cancer. This study evaluates the effect of vanillic acid on the circadian rhythms of circulatory lipid peroxidation and antioxidant status during N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG)-induced endometrial carcinoma in rats. The characteristics of circadian rhythms (acrophase, amplitude and mesor) of lipid peroxidation products – thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-enzymatic antioxidants such as reduced glutathione (GSH), vitamins C and E were markedly declined in MNNG-treated rats when compared to other groups. Pre and co-treatment of vanillic acid to MNNG-treated animals significantly increased the mesor and altered amplitudes of antioxidants and significantly decreased the mesor values of TBARS and LOOH. Further, delays in acrophase in MNNG-induced rats were reversed by vanllic acid administration. Thus, oral treatment of vanillic acid results in normalization of the altered rhythms of these indices of redox homeostasis (compared to controls) by its anticarcinogenic, cytoprotective and antioxidant effects.  相似文献   

20.
Effects of daily injections of lithium carbonate (20, 40 or 80 mg/kg body weight) during 14 and 28 days were investigated in Wistar mice. Attention was paid (1) to changes in concentrations of lithium, creatinine and urea in serum, (2) to level of oxidative stress by measuring lipids peroxidation level and catalase, superoxide-dismutase and glutathione-peroxidase activities, and (3) to changes in the histological structure of brain. The first intraperitoneal injection was followed by a transitory peak of lithium in the blood, reaching 0.25 mM and 1.1 mM and disappearing 6 and 12 h later for the 20 and 80 mg/kg doses, respectively. From the first to the last day of treatment, lithium concentrations in the blood, measured 12 h after the injections, increased from 0 to 0.11 mM (20 mg/kg dose) or 0.25 mM (80 mg/kg dose). The 80 mg/kg treatment induced a renal insufficiency evidenced by an increase of blood creatinine and urea levels. Lithium treatment was found to trigger an oxidative stress in kidney, but not in brain. In kidney, the lipid peroxidation level (TBARS) and the superoxide dismutase and catalase activities were increased. No change in glutathione peroxidase activity was detected. Histology of the brain cortex revealed interesting modifications: thicker neuronal cells and a denser network of dendrites, as compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号