首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.  相似文献   

2.
Recent advances in cadmium toxicity research suggest an association between cadmium and vascular diseases. However, the mechanisms of cadmium implications in vascular diseases are not yet explained. The objective of our present study is to explore the mechanism of cadmium induced endothelial dysfunction. Doses of 0, 1 and 5microM cadmium chloride were used to test the effects of cadmium on nitric oxide induced tube formation, cellular migration and subcellular actin polymerization in ECV-304 endothelial cells. An egg-yolk vascular bed model was used to study the effects of cadmium on angiogenesis. Results of the present study show that 5microM cadmium chloride effectively inhibited angiogenesis, cellular migration and tube formation. Phalloidin staining, which represents actin polymerization of endothelial cells, reveals that cadmium induces an altered F-actin pattern, which could be the prime cause for cadmium mediated inhibition of cellular migration and angiogenesis. Cadmium was also found to inhibit nitric oxide production in endothelial cells in a calcium free medium, which further hints that cadmium might impair endothelial functions by inhibiting endothelial nitric oxide synthase.  相似文献   

3.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.  相似文献   

4.
Endothelial cells produce various factors that regulate vascular tone, vascular permeability, angiogenesis, and inflammatory responses. The dysfunction of endothelial cells is believed to be the major culprit in various cardiovascular diseases, including hypertension, atherosclerosis, heart and renal failure, coronary syndrome, thrombosis, and diabetes. Endothelial cells express multiple transient receptor potential (TRP) channel isoforms, the activity of which serves to modulate cytosolic Ca(2+) levels ([Ca(2+)](i)) and regulate membrane potential, both of which affect various physiological processes. The malfunction and dysregulation of TRP channels is associated with endothelial dysfunction, which is reflected by decreased nitric oxide (NO) bioavailability, inappropriate regulation of vascular smooth muscle tonicity, endothelial barrier dysfunction, increased oxidative damage, impaired anti-thrombogenic properties, and perturbed angiogenic competence. Evidence suggests that dysregulation of TRPC4 and -C1 results in vascular endothelial barrier dysfunction; malfunction of TRPP1 and -P2 impairs endothelial NO synthase; the reduced expression or activity of TRPC4 and -V1 impairs agonist-induced vascular relaxation; the decreased activity of TRPV4 reduces flow-induced vascular responses; and the activity of TRPC3 and -C4 is associated with oxidative stress-induced endothelial damage. In this review, we present a comprehensive summary of the literature on the role of TRP channels in endothelial cells, with an emphasis on endothelial dysfunction.  相似文献   

5.
Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months) as compared to the young animals (1-3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.  相似文献   

6.
Endostatin induces acute endothelial nitric oxide and prostacyclin release   总被引:3,自引:0,他引:3  
Chronic exposure to endostatin (ES) blocks endothelial cell (EC) proliferation, and migration and induces EC apoptosis thereby inhibiting angiogenesis. Nitric oxide (NO) and prostacyclin (PGI(2)), in contrast, play important roles in promoting angiogenesis. In this study, we examined the acute effects of ES on endothelial NO and PGI(2) production. Unexpectedly, a cGMP reporter cell assay showed that ES-induced acute endothelial NO release in cultured bovine aortic endothelial cells (BAECs). Enzyme immunoassay showed that ES also induced an acute increase in PGI(2) production in BAECs. These results were confirmed by ex vivo vascular ring studies that showed vascular relaxation in response to ES. Immunoblot analysis showed that ES stimulated acute phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser116, Ser617, Ser635, and Ser1179, and dephosphorylation at Thr497 in BAECs, events associated with eNOS activation. Short-term exposure of EC to ES, therefore, unlike long-term exposure which is anti-angiogenic, may be pro-angiogenic.  相似文献   

7.
Arginase may play a major role in the regulation of vascular function in various cardiovascular disorders by impairing nitric oxide (NO) production. In the current study, we investigated whether supplementation of the arginase inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA) could restore endothelial function in an animal model of diet-induced obesity. Arginase 1 expression was significantly lower in the aorta of C57BL/6J mice fed a high-fat diet (HFD) supplemented with nor-NOHA (40 mg kg-1/day) than in mice fed HFD without nor-NOHA. Arginase inhibition led to considerable increases in eNOS expression and NO levels and significant decreases in the levels of circulating ICAM-1. These findings were further confirmed by the results of siRNA-mediated knockdown of Arg in human umbilical vein endothelial cells. In conclusion, arginase inhibition can help restore dysregulated endothelial function by increasing the eNOS-dependent NO production in the endothelium, indicating that arginase could be a therapeutic target for correcting obesity-induced vascular endothelial dysfunction.  相似文献   

8.
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.  相似文献   

9.
10.
Decreased nitric oxide (NO) bioavailability underlies a number of cardiovascular pathologies, including hypertension. The shear stress exerted by flowing blood is the main determinant of NO release. Rap1 promotes integrin‐ and cadherin‐mediated signaling. Here, we show that Rap1 is a critical regulator of NO production and endothelial function. Rap1 deficiency in murine endothelium attenuates NO production and diminishes NO‐dependent vasodilation, leading to endothelial dysfunction and hypertension, without deleterious effects on vessel integrity. Mechanistically, Rap1 is activated by shear stress, promotes the formation of the endothelial mechanosensing complex—comprised of PECAM‐1, VE‐cadherin and VEGFR2‐ and downstream signaling to NO production. Our study establishes a novel paradigm for Rap1 as a regulator of mechanotransduction.  相似文献   

11.
Neovascularization is an essential process in tumor development, it is conceivable that anti-angiogenic treatment may block tumor growth. In angiogenesis, nitric oxide (NO) is an important factor which mediates vascular endothelial cell growth and migration. beta-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho-[1,2-b]pyran-5,6-dione), a natural product extracted from the lapacho tree (Tabebuia avellanedae), has been demonstrated to possess anti-cancer and anti-viral effects. Whether beta-lapachone can induce endothelial cell death or has an anti-angiogenic effect is still an enigma. We investigated the in vitro effect of beta-lapachone on endothelial cells, including human vascular endothelial cell line, EAhy926, and human umbilical vascular endothelial cells (HUVEC). Our results revealed that (1) the intracellular cGMP levels and the mitochondria membrane potential (MMP) decreased, and calpain and caspases were activated, during beta-lapachone-induced endothelial cell death; (2) co-treatment with calpain inhibitors (ALLM or ALLN) or the intracellular calcium chelator, BAPTA, but not the general caspase inhibitor, zVAD-fmk, provided significant protection against apoptosis by preventing the beta-lapachone-induced MMP decrease and cytoplasmic calcium increase; (3) addition of NO downregulated the beta-lapachone-induced cGMP depletion and protected the cells from apoptosis by blocking the MMP decrease and the calcium increase; and (4) exogenous NO protects endothelial cells against the cell death induced by beta-lapachone, but not the anti-angiogenic effect. From all the data above, we demonstrated that NO can attenuate the apoptotic effect of beta-lapachone on human endothelial cells and suggest that beta-lapachone may have potential as an anti-angiogenic drug.  相似文献   

12.
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.  相似文献   

13.
14.
15.
16.
Our previous studies showed that menadione causes endothelial dysfunction which results in decreased relaxation and increased contraction of blood vessels. This investigation examined the role of two possible mechanisms (oxidative stress and arylation) in menadione-induced endothelial dysfunction. Menadione increased superoxide anion generation in aortic rings in a dose-dependent manner. Superoxide dismutase (SOD), reversed the inhibitory effects of menadione on vascular relaxation. The relaxation induced by the NO donor, sodium nitroprusside, was inhibited by menadione pretreatment in a dose-dependent manner. Endothelial nitric oxide synthase activity (eNOS) was suppressed by menadione. Menadione resulted in a dose-dependent reduction of cGMP levels accumulated by acetylcholine. This reduction of cGMP levels was blocked by SOD treatment, suggesting that superoxide anion generated by menadione could play a role in the inhibition of the nitric oxide pathway. Evidence supporting a possible role for arylation in impaired vascular relaxation was suggested by the observation that benzoquinone, which does not induce oxidative stress in aortic rings, inhibited acetylcholine-induced vascular relaxation to the same extent as menadione. Collectively, these results suggest that menadione can cause endothelial dysfunction in blood vessels by the inhibition of the nitric oxide pathway via superoxide anion generation and that arylation activity may also be another important mechanism.  相似文献   

17.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

18.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

19.
Excessive angiogenesis plays critical roles in many human diseases including cancer. We have previously shown that human decorin derived 26 amino acids peptide Leucine Rich Repeat 5 (LRR5) inhibits multiple aspects of angiogenesis including vascular endothelial growth factor (VEGF) stimulated migration of endothelial cells (ECs). In this study, we have characterized the molecular mechanism of LRR5 which reveals that its anti-migratory effect on ECs is mediated by inhibiting VEGF-stimulated endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) release. LRR5 carried out this function through signaling pathways that involves PI3 kinase and Akt, but not ERK. This anti-NO release effect is mediated by the C-terminal 13 amino acids of LRR5, correlating with the anti-migratory function of this region.  相似文献   

20.
Altered nitric oxide (NO) biosynthesis is thought to play a role in the initiation and progression of atherosclerosis and may contribute to increased risk seen in other cardiovascular diseases. It is hypothesized that altered NO bioavailability may result from an increase in endogenous NO synthase (NOS) inhibitors, asymmetric dimethly araginine (ADMA), and N(G)-monomethyl arginine, which are normally metabolized by dimethyarginine dimethylamine hydrolase (DDAH). Lipid hydroperoxides and their degradation products are generated during inflammation and oxidative stress and have been implicated in the pathogenesis of cardiovascular disorders. Here, we show that the lipid hydroperoxide degradation product 4-hydroxy-2-nonenal (4-HNE) causes a dose-dependent decrease in NO generation from bovine aortic endothelial cells, accompanied by a decrease in DDAH enzyme activity. The inhibitory effects of 4-HNE (50 microM) on endothelial NO production were partially reversed with L-Arg supplementation (1 mM). Overexpression of human DDAH-1 along with antioxidant supplementation completely restored endothelial NO production following exposure to 4-HNE (50 microM). These results demonstrate a critical role for the endogenous methylarginines in the pathogenesis of endothelial dysfunction. Because lipid hydroperoxides and their degradation products are known to be involved in atherosclerosis, modulation of DDAH and methylarginines may serve as a novel therapeutic target in the treatment of cardiovascular disorders associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号