首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrated previously that IGFBP-3 alone had no effect on cell death, but dramatically modulated apoptosis in Hs578T IGF non-responsive cells. We investigated whether a non-IGF binding mutant of IGFBP-3 retained its intrinsic actions in this cell line, prior to investigating its actions in IGF-responsive cells (MCF-7 and MCF-10A). In the Hs578T cells, the ceramide analogue, C2-induced apoptosis, non-glycosylated, glycosylated or mutant IGFBP-3 alone had no effect but on co-incubation with C2, all forms of IGFBP-3 markedly accentuated triggered apoptosis. In MCF-7 cells, IGFBP-3 was unable to modulate C2-induced death. In the MCF-10A cells, IGFBP-3 acted as a potent survival factor. IGFBP-3 also affected cell growth in the MCF-10A cells (inhibiting at low doses but increasing growth at higher concentrations). These actions of IGFBP-3 in the MCF-10A cells were independent of IGF-1. IGFBP-3 has differential IGF-independent effects on cell death and growth in normal breast and breast cancer cells.  相似文献   

2.
Receptor-interacting protein 140 (RIP140) contains multiple receptor interaction domains and interacts with retinoic acid receptors in a ligand-dependent manner. Nine LXXLL receptor-interacting motifs are organized into two clusters within this molecule, each differentially interacting with retinoic acid receptor (RAR) and retinoid X receptor (RXR). RAR interacts with the 5' cluster, whereas RXR interacts with both clusters. Additionally, a third ligand-dependent receptor-interacting domain is assigned to the very C terminus of this molecule, which contains no LXXLL motif. In mammalian cells, receptor heterodimerization is required for efficient interaction of RAR/RXR with RIP140. Furthermore, the heterodimeric, holoreceptors cooperatively interact with RIP140, which requires the activation function 2 domains of both receptors. By using different retinoic acid reporter systems, it is demonstrated that RIP140 strongly suppresses retinoic acid induction of reporter activities, but coactivator SRC-1 enhances it. Furthermore, an intrinsic repressive activity of RIP140 is demonstrated in a GAL4 fusion system. Unlike receptor corepressor, which interacts with antagonist-bound RAR/RXRs, RIP140 does not interact with antagonist-occupied RAR/RXR dimers. These data suggest that RIP140 represents a third coregulator category that is able to suppress the activation of certain agonist-bound hormone receptors.  相似文献   

3.
Insulin-like growth factor binding protein-3 (IGFBP-3) inhibits proliferation and promotes apoptosis in normal and malignant cells. In MCF-10A human mammary epithelial cells, 30 ng/ml human plasma-derived IGFBP-3 inhibited DNA synthesis to 70% of control. This inhibition appeared IGF-independent, since neither an IGF-receptor antibody nor IGFBP-6 inhibited DNA synthesis. Malignant transformation of MCF-10A cells by transfection with Ha-ras oncogene abolished the inhibitory effect of IGFBP-3, concomitant with an increase in IGFBP-3 secretion and cell association of approximately 60 and 300%, respectively. When mitogen-activated protein (MAP) kinase activation was partially inhibited using PD 98059, IGFBP-3 sensitivity in ras-transfected cells was restored, with a significant inhibitory effect at 10 ng/ml IGFBP-3. PD 98059 had no effect on IGFBP-3 secretion or cell association by ras-transfected or parent MCF-10A cells. Hs578T, a tumor-derived breast cancer cell line that expresses activated Ha-ras, similarly has a high level of secreted and cell-associated IGFBP-3. In the absence of PD 98059, DNA synthesis by Hs578T cells was reduced to 70% of control by 1000 ng/ml IGFBP-3. PD 98059 increased sensitivity to IGFBP-3, so that this level of inhibition was achieved with 100 ng/ml IGFBP-3. These results suggest that MAP kinase activation by oncogenic ras expression causes IGFBP-3 resistance, a possible factor in the dysregulation of breast cancer cell growth.  相似文献   

4.
5.
We have demonstrated previously that insulin-like growth factor binding protein (IGFBP)-3 alone has little growth inhibitory effect on Hs578T human breast cancer cells, but that it can dramatically accentuate the apoptotic response to the physiological trigger, ceramide, in an IGF-independent manner. We have now studied the potential of other IGFBPs (1-6) to interact with apoptotic signalling pathways. Hs578T cells were preincubated with a binding protein (100 ng/ml) for 24 h, followed by co-incubation of the binding protein with an apoptotic dose of ceramide or RGD-containing peptide for a further 24 h. Apoptosis was assessed using flow cytometry, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue) assay and morphological assessment. Binding protein profiles were determined using ligand and immunoblotting techniques. Each of the IGFBPs (1-6) alone had no significant (P > 0. 05) growth inhibitory effects relative to control cells. In contrast to IGFBP-3, which significantly (P < 0.05) accentuated C2-induced apoptosis, IGFBP-1, -2, and -6 had no effect, whereas IGFBP-4 and -5 each caused marked (P < 0.01) inhibition of ceramide-induced programmed cell death. Apoptosis induced by RGD was also significantly (P < 0.05) reduced by IGFBP-5, whereas IGFBP-3 had no effect. These data provide evidence to suggest that individual IGFBPs have specific IGF-independent effects and act differentially on apoptotic signalling pathways.  相似文献   

6.
7.
8.
We have demonstrated previously that IGFBP-5 can confer survival against apoptosis induced by ceramide, C2, or a small synthetic arginine-glycine-aspartic acid (RGD)-containing peptide in a direct manner. The endogenous ceramide-induced pathway is normally counter-balanced by survival signals mediated by sphingosine kinase (SK) and protein kinase C (PKC). In order to investigate whether these pathways are involved in the IGFBP-5 survival effect, we have used inhibitors of SK (N, N-di-methyl sphingosine, DMS) and PKC (chelerythrine chloride, CC). The effect of pre-incubating Hs578T breast cancer cells with IGFBP-5 on cell adhesion or on subsequent cell death induced by C2 or RGD was investigated with and without the presence of DMS or CC. Cell death was determined by trypan blue cell counts and apoptosis confirmed by morphological assessment and flow cytometry. Cell attachment was determined by a cell adhesion assay. The presence of IGFBP-5 significantly inhibited cell death induced by C2 or RGD, compared to the triggers of apoptosis alone (P<0.01 in both cases). In the presence of either IGFBP-5, CC or DMS, there was no significant effect on cell death compared to the control. IGFBP-5 in the presence of either inhibitor resulted in a significant increase in cell death; IGFBP-5 also lost its ability to confer survival on C2 and RGD-induced apoptosis and in contrast significantly increased cell death. In the cell adhesion assay, IGFBP-5 significantly increased cell attachment over basal levels. In the presence of either inhibitor the IGFBP-5 effect on cell adhesion was reversed and cell attachment was reduced to below basal levels. These data suggest that IGFBP-5 promotes the attachment and survival of Hs578T cells by modulating the balance between ceramide and opposing survival signals.  相似文献   

9.
IGFBP-3 interacts with the retinoid X receptor-alpha (RXRalpha) and retinoic acid receptor-alpha (RARalpha) and thereby interferes with the formation of RXR:RAR heterodimers. Here we identify the domains in RXRalpha and IGFBP-3 that participate in this interaction. When different regions of RXRalpha were expressed independently, we found that only the DNA-binding domain (C-domain) bound IGFBP-3. Residues in the second Zn-finger loop (Gln49, Arg52), which contribute to C-domain dimerization on DR1 response elements, proved essential to IGFBP-3 binding. In complementary studies, we found that residues within the N-terminal domain of IGFBP-3 (Thr58, Arg60) and motifs in its C-terminal domain ((220)LysLysLys, (228)LysGlyArgLysArg) were required for interaction with RXRalpha and RARalpha. Unlike wild-type IGFBP-3, the non-retinoid receptor-binding mutants of IGFBP-3 were unable to attenuate all-trans-retinoic acid-induced transactivation of the RAR response element by RXR:RAR heterodimers. We conclude that residues in both the N- and C-terminal domains of IGFBP-3 are involved in binding the retinoid receptors, and that this interaction is essential to the modulation of RAR-signaling by IGFBP-3.  相似文献   

10.
We have demonstrated previously in Hs578T cells that insulin-like growth factor binding protein (IGFBP)-3 can significantly accentuate ceramide (C2)-induced apoptosis, but has no effect on cell death induced by integrin detachment [using an arginine-glycine-aspartic acid (RGD)-containing peptide]. In contrast we found that IGFBP-5 could inhibit apoptosis induced by either C2 or integrin detachment. It is now clear that the mitochondria not only provide the energy required for cell viability, but can also play an important role during the commitment phase to apoptosis. We used a mitochondrial respiratory chain inhibitor, antimycin A, at both apoptotic and nonapoptotic doses to further investigate the IGF-independent actions of IGFBP-3 and IGFBP-5 on C2 and RGD-induced apoptosis in the Hs578T cells. Hs578T cells had one of three treatments. 1: They were incubated with increasing doses of antimycin A for 24 h. 2: They were coincubated with an apoptotic dose of either C2 or RGD together with a nonapoptotic dose of antimycin A for 24 h. 3: They were incubated with a binding protein (100 ng/ml) for 24 h followed by coincubation of the binding protein with an apoptotic dose of antimycin A for a further 24 h. Cell viability was assessed by trypan blue dye exclusion and MTT assay, and apoptosis was confirmed and measured by morphologic assessment and flow cytometry. We found that antimycin A initiated apoptosis at 10 micromol/L and above. We also demonstrated that a nonapoptotic dose of antimycin A (0.1 micromol/L) significantly inhibited C2-induced apoptosis, whereas it significantly accentuated RGD-induced cell death. In addition, we found that cell death induced by antimycin A can be accentuated by IGFBP-3 but is not affected by IGFBP-5. These data indicate that IGFBP-3 can directly enhance apoptosis triggered via the mitochondria; either directly by a mitochondrial inhibitor or by C2 (which we demonstrate to act via effects on the mitochondria in this model). IGFBP-5, however, appears to confer survival effects via a distinct pathway not involving the mitochondria.  相似文献   

11.
The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the atRA-mediated induction. Taken together, we have identified and characterized the functional atRA response element that is responsible for the atRA-mediated induction of RIG1 gene.  相似文献   

12.
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.  相似文献   

13.
We have demonstrated previously that IGFBP-5 alone had no effect on cell death but modulated ceramide-induced apoptosis in Hs578T IGF non-responsive cells. To investigate if IGFBP-5 maintains its intrinsic ability to modulate apoptosis in IGF-responsive cells, we used a non-IGF binding mutant of IGFBP-5. In Hs578T cells, non-glycosylated, glycosylated or mutant IGFBP-5 alone each had no effect on cell death, whereas all forms inhibited ceramide-induced apoptosis. In IGF-responsive MCF-7 cells, each wild type form reduced ceramide-induced cell death but mutant IGFBP-5 was without effect. In the presence of mutant IGFBP-5, however, IGF-I no longer conferred survival and in the presence of wild type IGFBP-5, long R3 IGF-I was also unable to confer survival. In summary, all forms of IGFBP-5 modulated ceramide-induced apoptosis in Hs578T cells. In MCF-7 cells, IGF-I-induced survival could be facilitated by IGFBP-5, but also blocked by IGFBP-5 if association with IGFBP-5 was prevented.  相似文献   

14.
15.
To identify potential cancer related glycoproteins in breast cancer cells, we enriched N-linked glycoproteins by lentil lectin from the human breast cancer cell line Hs578T and the normal breast cell line Hs578BST for proteomic comparison. Glycoproteins were separated and compared by two-dimensional electrophoresis. Twenty-four glycoproteins were identified that expressed remarkably differently, among which nine were involved in the progress of collagen synthesis. Prolyl 4-hydroxylase alpha polypeptide II (P4HA2) expression and influence in breast cancer was further investigated. Immunohistochemistry revealed that P4HA2 was upregulated in breast tumor cells compared with its adjacent normal tissues. Moreover, overexpression and RNA interference of P4HA2 showed that P4HA2 expression suppressed cell proliferation and migration in Hs578T in vitro.  相似文献   

16.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

17.
Fructose-1,6-bisphosphatase (FBPase) is a key gluconeogenic enzyme. The data herein show that both the enzyme activity and mRNA level of the human FBPase gene are enhanced by 9-cis retinoic acid (9cRA) and all-trans retinoic acid (atRA) as well as by 1,25-dihydroxyvitamin D3 (VD3) in human promyelocytic HL60 cells and normal monocytes in peripheral blood, which were used as an alternative source to liver for the DNA diagnosis of FBPase deficiency. To understand the molecular mechanism of this enhancing action, the 2.4 kb 5'-regulatory region of the human FBPase gene was isolated and sequenced. Using luciferase reporter gene assays, a 0.5 kb FBPase basal promoter fragment was found to confer induction by VD3, 9cRA, and atRA that was mediated by the vitamin D3 receptor (VDR), retinoid X receptor (RXR), and retinoic acid receptor (RAR). Within this region, a direct repeat sequence, 5'-TAACCTttcTGAACT-3' (-340 to -326), which functions as a common response element for VD3, 9cRA, and atRA, was identified. The results of electrophoretic mobility shift assays indicated that VDR-RXR and RAR-RXR heterodimers bind this response element. Collectively, these observations indicate that VD3 and RA are important modulators of the expression of the human FBPase gene in monocytic cells.  相似文献   

18.
Epidemiological evidence suggests tea (Camellia sinensis L.) has chemopreventive effects against various tumors. Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Here we have tested the effects of green tea on mammary tumorigenesis using the 7,12-dimethylbenz(a)anthracene (DMBA) Sprague-Dawley (S-D) rat model. We report that green tea significantly increased mean latency to first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; although, it did not affect tumor number in the female rats. Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27(Kip1) cyclin-dependent kinase inhibitor (CKI) expression. Hs578T cells expressing elevated levels of p27(Kip1) protein due to stable ectopic expression displayed increased G1 arrest. Thus, green tea had significant chemopreventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27(Kip1) CKI.  相似文献   

19.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号