首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) in the soluble fraction of rabbit liver which catalyzes the dephosphorylation of muscle phosphorylase a and phosphohistone (P-histone) was resolved into three active fractions by NaCl gradient elution from a DEAE-cellulose column (Fraction I, 11 and III in order of elution). They have different relative reaction rates for the two substrates and different degrees of stimulation by Mn-2+. Apparent Km values of Fraction I, II and III were 15, 20 and 16 muM for phosphorylase a, and 6.9, 5.3 and 4.4 muM for P-histone, respectively (with Mn-2+ in the assay mixture). 2. On sucrose density gradient centrifugation Fraction I and II were revealed to contain a major peak (7.0 S and 7.8 S, respectively) and a minor peak (4.0 S) of activity, while Fraction III contained only one peak (5.8 S). Freezing and thawing in the presence of 0.2 M mercaptoethanol dissociated all three fractions into subunits of similar molecular size (3.4 S), with concomitant enhancement of phosphorylase phosphatase activity. The Km values all became essentially the same (20 muM for phosphorylase a and 16 muM for P-histone). 3. The phosphorylase phosphatase and P-histone phosphatase activities could not be separated with any of the procedures described. Competition between the two phosphoprotein substrates was observed with some of the fractions.?  相似文献   

2.
The first ATP-dependent complex formed in pre-mRNA splicing is the prespliceosome, a 30 S complex. This reaction was investigated using partially purified fractions isolated from nuclear extracts of HeLa cells. Previous studies (Furneaux, H. M., Perkins, K. K., Freyer, G. A., Arenas, J., and Hurwitz, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4351-4355) have shown that DEAE-cellulose chromatography of nuclear extracts yielded two fractions (fractions I and II, eluted at 0.2 and 1 M NaCl, respectively) which carried out pre-mRNA splicing only when combined. Fraction II, alone and in the presence of ATP, supported the formation of the 30 S complex. In this report, we have separated fraction II into ribonucleoprotein and protein-rich fractions by isopycnic banding in CsCl. The combination of these two fractions completely replaced fraction II in prespliceosome formation; when supplemented with fraction Ib (1 M NaCl Biorex fraction derived from fraction I), the preparations supported spliceosome formation; when supplemented with fraction I, they yielded spliced products. The CsCl fractions, like fraction II, efficiently converted pre-mRNA to the 30 S complex with high yields (30-70%). The 30 S complex was shown to contain pre-mRNA complexed to U2 small ribonucleoproteins and small amounts of U1 small ribonucleoproteins. The 30 S complex protected a 50-nucleotide region at the 3'-end of the intron from T1 RNase attack. This region included sequences spanning the branch site, the polypyrimidine stretch and the AG dinucleotide of the 3'-splice site. When the 30 S complex was first generated with partially purified fractions, followed by the addition of a large amount of poly(U) or unlabeled pre-mRNA, the 30 S complex could be chased into a 55 S spliceosome complex by the addition of fraction Ib. These results support the conclusion, initially derived from kinetic data, that the 30 S complex is a precursor of the 55 S complex.  相似文献   

3.
C2 toxin (C2T) elaborated by Clostridium botulinum types C and D is composed of two separate protein components, designated components I and II, which individually have little activity, but, when mixed and treated with trypsin, exert the potent activity. The present study provides the evidence that component I of the toxin catalyzes the hydrolysis of NAD into nicotinamide and ADP-ribose, whereas component II does not, indicating that component I of C2T has NAD-glycohydrolase activity, which ability is shared with cholera and diphtheria toxins. However, C2T affected neither glycerol production of fat cells nor protein synthesis in cell-free system. Component I of C2T in the presence of [alpha-32P]NAD radiolabeled a protein of Mr 46,000 in the supernatant fractions of mouse tissue homogenates; the protein was abundant in brain, lung and intestine, whereas there was little or none of the protein in muscle. These results indicate that component I can catalyze the covalent attachment of the ADP-ribose moiety of NAD to intracellular protein, which differs from those modified with cholera and diphtheria toxins. The present data, together with previous findings, suggest that the biological activity of C2T is elicited by ADP-ribosylation activity of component I, which is internalized into the cells after binding to the receptor site introduced with the binding of component II to the cell surface membrane.  相似文献   

4.
In this work we have studied the chromatographic pattern on Bio-Gel P-30 columns of the glucagon-like immunoreactivity (GLI) present in unextracted plasma from normal dogs in the basal state and after intraduodenal administration of glucose. Basal plasma GLI, measured by R-8 antiserum, was distributed in four distinct fractions, whose approximate molecular weights were: greater than 30000 delta (Fraction I), 10000 delta (Fraction II), 3500 delta (Fraction III) and 2000 delta (Fraction IV). Fraction I accounted for the highest percent of total immunoreactivity. The increase in plasma GLI during glucose absorption was due to a significant increase of Fraction II, which may well correspond to tissue GLI Peak I, while no significant changes were evident in the other three fractions. The fact that tissue Peak I (or plasma Fraction II) ssems to be the factor secreted during glucose absorption puts the material/s of this molecular size in the first place for further investigation.  相似文献   

5.
The 5SrRNA in the rat liver postmicrosomal supernatant was investigated. Acrylamide gel electrophoresis and Northern blot analysis showed that most of the 5SrRNA was present in the fractions obtained on high molecular weight regions separated by Sephadex G-200 column chromatography of the supernatant, which contained the bulk of the methionyl-tRNA synthetase (Fraction I) and tyrosyl-tRNA synthetase (Fraction II). A high molecular weight complex containing nine aminoacyl-tRNA synthetases [Mirande, M., LeCorre, D., & Waller, J.-P. (1985) Eur. J. Biochem. 147, 281-289] was purified by fractional precipitation with polyethylene glycol 6000, gel filtration on Bio-Gel A-1.5m, and finally tRNA-Sepharose column chromatography, which gave two fractions. Fraction B showed the activities of nine aminoacyl-tRNA synthetases and gave protein bands corresponding to eight previously identified enzymes on SDS-PAGE. Fraction A, eluted with a lower KCl concentration than Fraction B, showed lower activities than fraction B of eight of the aminoacyl-tRNA synthetases, the exception being prolyl-tRNA synthetase. The staining patterns with ethidium bromide of the RNAs after PAGE showed 5SrRNA bands for Fraction A but not for Fraction B. However, Northern blot analysis indicated that 5SrRNA was present in both Fractions A and B. The staining pattern after SDS-PAGE of Fraction A with Coomassie Brilliant Blue showed several protein bands in addition to those observed for Fraction B, one of which, with a staining intensity comparable with those of other bands, was located at the same position as ribosomal protein L5, which is the protein moiety of the 5SrRNA-L5 protein complex of ribosomal 60S subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Pure venom from the acontial nematocysts of the sea anemone Aiptasia pallida exhibited phospholipase A (phosphatide acyl-hydrolase; EC 3.1.1.4) activity on a mixture of free phospholipids. Diethyl aminoethyl cellulose fractionation of the venom gave four distinct protein peaks with the phospholipase A activity being restricted to fractions III and IV. These two fractions tested separately also were able to lyse red blood cells weakly. Fractions I and II enhanced the hemolytic activity of fractions III and IV, with fractions I and III giving as much as ninefold enhancement over that of III alone. Fraction I appears analogous to the direct lytic factor of some snake and bee venoms. Fraction III, which could not appreciably hydrolyze the phospholipids of the intact red cell membrane, was able to do so in the presence of fraction I. The sequential interactions of these two nematocyst venom proteins with the red blood cell membrane to produce hemolysis is discussed.  相似文献   

7.
1. An approach for testing the homogeneity of metabolite pools is described. An alien enzyme that can attack the metabolite in question is introducted into the system studied. By analyzing the time-course of decomposition of the metabolite it can be decided whether the pool is homogeneous in respect of reactivity towards the probe-enzyme or can be divided into fractions of different reactivities. 2. The information obtainable from such experiments is illustrated by the case of human erythrocyte sonicate as model system with NAD-glycohydrolase as probe-enzyme. The nicotinamide adenine dinucleotide pool in the concentrated sonicate could be resolved into three fractions (I, II and III) with half-lives of about 1, 7 and 240 min, respectively. Fraction I is free NAD, fraction II is NAD bound to glyceraldehyde-3-phosphate dehydrogenase, and fraction III is coenzyme strongly bound to some, so far unidentified, protein. Sonicate glycolysis seems to require only fraction II and is unable to use fraction III under the experimental conditions applied. 3. The scope of application of the enzyme-probe method is discussed.  相似文献   

8.
Low-phenylalanine-peptides for dietotherapy of phenylketonuria (PKU) were prepared from soybean protein isolate. Soluble fraction of soybean protein isolate was hydrolysed by alpha-chymotrypsin then followed by carboxypeptidase-A. Molecular weight distribution and amino acid analysis were made on the resultant polypeptides. The chymotrypsin hydrolysate was divided into two fractions, Fraction I (molecular weight greater than 2500) and Fraction II (molecular weight between 1000 and 2500). The phenylalanine content of Fraction I (3.1%) was lower than that of Fraction II (5%), indicating the nonuniform distribution of phenylalanine in soy bean protein. Carboxypeptidase hydrolysis of Fraction I further reduced the phenylalanine concentration to 2.3%, approximately half of the original concentration in soybean protein isolate.  相似文献   

9.
The replication of simian virus 40 has been studied by using cell-free extracts derived from human 293 cells. Fractionation of this extract has led to the identification of three fractions that are required for efficient DNA synthesis. Initial fractionation of the crude extract by phosphocellulose chromatography has produced two fractions, I and II, neither of which is able to support replication separately, but when they are combined, efficient synthesis is restored. Both fractions are required, with SV40 T antigen, for the formation of a presynthesis complex at the SV40 origin. The major replication enzymes, DNA polymerase, DNA primase and the topoisomerases I and II all reside in fraction II. Fraction I has been subdivided into two subfractions (A and B) by DEAE-cellulose chromatography. Fraction A is essential for replication and is required for presynthesis complex formation. Fraction B stimulates DNA replication and is only required at the elongation stage. This multicomponent system has provided the foundation for identification of individual components that are required for DNA replication in vitro.  相似文献   

10.
Naturally occurring organics were extracted from water collected from Skinface Pond near Aiken, S.C. Organics were separated into four nominal diameter size fractions (I, >0.0183; II, 0.0183 to 0.0032; III, 0.0032 to 0.0009; IV, <0.0009 mum) by membrane ultrafiltration and introduced into Scenedesmus obliquus and Aeromonas hydrophila cultures to determine their effects on Am availability for uptake. Effects on Am uptake were determined in actively growing S. obliquus cultures after 96 h of growth and in dense cultures of nongrowing cells after 4 h. Uptake by A. hydrophila was determined after 4 and 24 h in actively growing cultures. All organic fractions stimulated S. obliquus growth, with the most pronounced effects due to larger organic fractions, whereas no apparent growth stimulation of A. hydrophila was observed for any organic fraction. For both long-term and short-term studies, cellular Am concentration (picocuries/cell) increased with increasing Am concentration for S. obliquus and A. hydrophila. Fraction IV increased Am uptake by both S. obliquus and A. hydrophila during 4-h incubations. During 96-h incubations fraction I was flocculated and cosedimented, with S. obliquus and A. hydrophila cells causing an apparent increase in Am uptake. Fractions II and III reduced apparent Am uptake by S. obliquus as a result of biological dilution caused by increased algal growth due to the organics. Fraction IV caused a reduction in Am uptake by S. obliquus not attributable to biological dilution. Organics increased Am uptake by A. hydrophila during 4- and 24-h incubations. A. hydrophila also caused flocculation of fraction I during 96-h incubations.  相似文献   

11.
Calcium/calmodulin-dependent protein kinase II (CaMKII) catalyzes the phosphorylation of various cellular proteins and excessive activities have been implicated in the pathogenesis of various chronic diseases. We hypothesized that positively charged peptides can be produced through enzymatic hydrolysis of pea proteins; such peptides could then bind to negatively charged calmodulin (CaM) at a physiological pH level and inhibit CaMKII activity. Pea protein isolate was hydrolyzed with an alkaline protease (alcalase) and filtered through a 1000-mol wt cutoff membrane. The permeate, which contained low-molecular weight peptides, was used to isolate cationic peptides on an SP-Sepharose column by ion exchange chromatography. Separation of the permeate on the SP-Sepharose column yielded two fractions with net positive charges that were subsequently used for enzyme inhibition studies. Fraction I eluted earlier from the column and contained lower contents of lysine and arginine than Fraction II, which eluted later. Results show that both peptide fractions inhibited CaMKII activity mostly in a competitive manner, although kinetic data suggested that inhibition by Fraction II may be of the mixed type. Kinetic analysis (K(m) and K(i)) showed that affinity of peptides in Fraction II for CaM was more than that in Fraction I, which was directly correlated with the higher inhibitory properties of Fraction II against CaMKII. The results suggest that it may be possible to use pea protein-derived cationic peptides to modulate CaMKII activities.  相似文献   

12.
This study was conducted to identify the sourness-suppressing peptides in cooked pork and to clarify the mechanism of sour taste suppression by the peptides. An extract prepared from pork loins vacuum-cooked at 60 °C for 6 hours after conditioning at 4 °C for 20 days was separated into three fractions: under MW 500 (Fraction I), MW 500–1,000 (Fraction II), and over MW 1,000 (Fraction III). The Fraction I content was largest. As judged by sensory evaluation, the addition of Fraction II was capable of suppressing stronger sourness than the other fractions. Fraction II also enhanced umami and saltiness. Three peptides (APPPPAEVHEVV, APPPPAEVHEVVE, and APPPPAEVHEVHEEVH) in Fraction II increased greatly during conditioning. A common peptide, APPPPAEVHEV, in the amino acid sequences of the three peptides suppressed the sour taste. The mechanism of sourness suppression by the peptide was concluded to comprise inhibition of the binding of sour taste substances to the membranes of the tongue.  相似文献   

13.
Studies on the assembly of apo B-100-containing lipoproteins in HepG2 cells   总被引:10,自引:0,他引:10  
The relationship between apoB-100 and the membrane of the endoplasmic reticulum (ER) has been studied by a combination of pulse-chase methodology and subcellular fractionation. HepG2 cells were pulse-labeled with [35S]methionine for 3 min and chased with cold methionine for periods between 0 and 20 min. ApoB-100 and albumin, present in the membrane as well as in the luminal content of the ER vesicles, were isolated after each chase period. The results indicated that apoB-100 was cotranslationally bound to the membrane of the ER, and from this membrane-bound form, was transferred to the lumen after a delay of 10-15 min. Albumin was, as could be expected for a typical secretory protein, cotranslationally sequestered in the lumen of the ER. Apo-B-100-containing lipoproteins present in the microsomal lumen were analyzed by ultracentrifugation in a sucrose gradient. ApoB-100 occurred on rounded particles in three density regions: (i) d 1.1065-1.170 g/ml (Fraction I), (ii) d 1.011-1.045 g/ml (Fraction II), and (iii) d less than 1.011 g/ml (Fraction III). Fraction I, isolated from cells cultured in the absence of oleic acid, contained a homogenous population of particles with a mean diameter of approximately 200 A. Fraction I isolated from cells cultured in the presence of oleic acid was slightly more heterogeneous and had a mean diameter of approximately 250 A. Fractions II and III had mean diameters of 300 and 500 A, respectively. Cholesterol esters and triacylglycerol were the quantitatively dominating lipid constituents of all three fractions. Pulse-chase experiments indicated that Fraction I contained the newly assembled lipoproteins. With increasing chase time, the apoB-100 radioactivity was redistributed from Fraction I to Fractions II and III, indicating that Fraction I is converted into Fractions II and III during the intracellular transfer. Particles corresponding to Fractions II and III were by far the most abundant lipoproteins found in the medium. The results presented support the possibility of a sequential assembly of apoB-100-containing lipoproteins.  相似文献   

14.
This study was conducted to identify the sourness-suppressing peptides in cooked pork and to clarify the mechanism of sour taste suppression by the peptides. An extract prepared from pork loins vacuum-cooked at 60 degrees C for 6 hours after conditioning at 4 degrees C for 20 days was separated into three fractions: under MW 500 (Fraction I), MW 500-1,000 (Fraction II), and over MW 1,000 (Fraction III). The Fraction I content was largest. As judged by sensory evaluation, the addition of Fraction II was capable of suppressing stronger sourness than the other fractions. Fraction II also enhanced umami and saltiness. Three peptides (APPPPAEVHEVV, APPPPAEVHEVVE, and APPPPAEVHEVHEEVH) in Fraction II increased greatly during conditioning. A common peptide, APPPPAEVHEV, in the amino acid sequences of the three peptides suppressed the sour taste. The mechanism of sourness suppression by the peptide was concluded to comprise inhibition of the binding of sour taste substances to the membranes of the tongue.  相似文献   

15.
Enzymatic heme oxygenase activity has been partially purified from extracts of the unicellular red alga Cyanidium caldarium, and the macromolecular components have been separated into three protein fractions, referred to as Fractions I, II, and III, by serial column chromatography through DEAE-cellulose and Reactive Blue 2-Sepharose. Fraction I is retained by DEAE-cellulose at low salt concentration and eluted by 1 M NaCl. Fraction II is retained by Blue Sepharose at low salt concentration and eluted by 1 M NaCl. Fraction III is retained on 2',5'-ADP-agarose and eluted by 1 mM NADPH, while Fraction II is not retained on ADP-agarose. Fractions I-III, have Mr values of 22,000, 38,000, and 37,000, respectively (all +/- 2,000), as determined by Sephadex gel filtration chromatography. In vitro heme oxygenase activity requires the presence of all three fractions, plus substrate, O2, reduced pyridine nucleotide, and another reductant. Ascorbate, isoascorbate, and phenylenediamine serve equally well as the second reductant, but hydroquinone can also be used, with lower activity resulting. Fractions I-III are heat sensitive and inactive by Pronase digestion. Fraction I has a visible absorption spectrum similar to that of ferredoxin and is bleached by dithionite reduction or incubation with p-hydroxymercuribenzoate. Fraction I can be replaced by commercially available ferredoxin derived from the red alga Porphyra umbilicalis, and to a smaller extent, by spinach ferredoxin. Fraction III contains ferredoxin-linked cytochrome c reductase activity and can be partially replaced by spinach ferredoxin-NADP+ oxidoreductase. Reconstituted heme oxygenase and ferredoxin-linked cytochrome c reductase activities are both abolished if Fraction I or III is preincubated with 0.1 mM p-hydroxymercuribenzoate, but heme oxygenase activity is only slightly affected if Fraction II is preincubated with p-hydroxymercuribenzoate. Preincubation of Fraction II with 0.5 mM diethylpyrocarbonate inactivates heme oxygenase in the reconstituted system, and 10 microM mesohemin partially protects this Fraction against diethylpyrocarbonate inactivation. Algal heme oxygenase is inhibited 80% by 2 microM Sn-protoporphyrin even in the presence of 20 microM mesohemin. Fraction II is rate limiting in unfractionated and reconstituted incubation mixtures. None of the three cell fractions could be replaced by bovine spleen microsomal heme oxygenase or NADPH-cytochrome P450 reductase.  相似文献   

16.
RNA prepared from the lymphoid tissues of guinea pigs specifically sensitized to mono(p-azobenzene-arsonate)-N-chloroacetyl-l-tyrosine (ARSNAT) (MW = 486) was fractionated by oligo(dT)-cellulose affinity chromatography. Two fractions designated as I and II were eluted from the column. Fraction II, binding to the column and containing polyadenylic acid sequences, transferred ARSNAT or keyhole-limpet-hemocyanin (KLH) sensitivity to nonsensitized guinea pig peritoneal exudate cells (GP-PEC) in 14 experiments. Fraction I was unable to transfer KLH or ARSNAT sensitivity to GP-PEC. The amount of Fraction II needed to transfer ARSNAT sensitivity was 10 times less than previously reported. Synthetic nonlymphoid cell poly(A) tested in this system failed to transfer ARSNAT or KLH sensitivity to GP-PEC. Both Fractions I and II were inactivated by ribonuclease. The results suggest a possible messenger function for the poly (A)-containing RNA fractions.  相似文献   

17.
The repeating pentasaccharide of O-antigen from Escherichia coli O111 contains galactose, glucose, N-acetylglucosamine, and colitose, the latter representing the major antigenic determinant. Phenol extraction of this strain was previously shown to release two fractions (I and II) containing O-antigen carbohydrate, and both fractions were believed to be lipopolysaccharide. We have now characterized fractions I and II and conclude that only fraction II represents lipopolysaccharide. Fraction II contains phosphate, 2-keto-3-deoxyoctonate, beta-hydroxymyristic acid, and potent endotoxin activity, whereas fraction I was deficient in all of these properties of the lipid A and core oligosaccharide regions of lipopolysaccharide. Fractions I and II each represented 50% of the total cellular O-antigen, and both were present on the cell surface. Both fractions were metabolically stable, and no precursor-product relationship existed between them. Fraction II had a number-average molecular weight of 15,800, corresponding to an average of 12 O-antigen repeats per molecule. In contrast, fraction I had a number-average molecular weight of 354,000, corresponding to an average of 404 O-antigen repeats per molecule. Before heat treatment, cells of E. coli O111 are poorly agglutinated by O-serum; although this indicates the presence of a capsule, the corresponding K-antigen was never detected. We conclude that fraction I, when present on the cell surface, inhibits agglutination of unheated cultures of E. coli O111 by O-serum because: (i) a variant strain which lacks fraction I was agglutinated by O-serum without prior heating; (ii) erythrocytes coated with purified fraction I behaved like bacteria containing fraction I in showing inhibition of O-serum agglutination; and (iii) heat treatment released fraction I and rendered bacterial cells agglutinable in O-serum.  相似文献   

18.
Acid hydrolyzates of waxy-maize starch were separated to give Fractions I, II, and III [T. Watanabe, and D. French, Carbohydr. Res., 84 (1980) 115-123]. Watanabe and French suggested that Fraction II, which contains approximately 25 D-glucose residues including an alpha-D-(1----6)-linked branch, has a double helical structure. In the present study, the thermodynamics of binding of iodine to Fractions II and III, and debranched Fraction II (Fraction II') was measured by isothermal-flow calorimetry. If four binding sites for Fraction II and two for Fractions II' and III are assumed, the standard free-energy changes, delta Gb0, for the binding of I2 are -18.5, -18.8, and -18.4 kJ X (mol I2)-1, and the enthalpy changes, delta Hb, are -28.4, -24.7, and -26.9 kJ X (mol I2)-1, respectively. The similarity of these values for the three fractions indicates that the conformation of Fraction II is essentially the same as those of Fractions II' and III, and that Fraction II, therefore, does not have a double helical structure in solution. The values for delta Gb0 are approximately 15 kJ X mol-1 less negative, and those for delta Hb approximately 40 kJ X mol-1 less negative than published values for the starch-I2 complex. These differences are due to the relatively very short D-glucose chains in the amylodextrin fractions employed in the present work.  相似文献   

19.
Human transfer factor: fractionation and biologic activity.   总被引:2,自引:0,他引:2  
Human transfer factor (TF) was fractionated by exclusion chromatography and the fractions were tested for biologic activity in vivo and in vitro. Specific TF activity in vivo was found to reside in the major UV-absorbing peak (Fraction III). Fraction III eluted at 2.7 X V(O) and transferred tuberculin, candida, or KLH-reactivity to previously negative recipients. Fraction III from nonreactive donors was ineffective. When the fractions were tested in vitro, we found that both the mitogenic activity of whole TF and the suppressive activity to mitogen activation when present in TF was found in Fraction I. Fraction III contained components responsible for augmentation of PHA and PWM responses. In addition, Fraction III contained the component responsible for antigen-dependent augmentation of lymphocyte transformation. Fraction IV was suppressive to antigen-induced lymphocyte transformation. These data suggest that TF preparations contain components which can affect immune reactions in both specific and nonspecific ways.  相似文献   

20.
Vesicular fragments of Golgi apparatus, smooth- and rough-surfaced microsomes from rat liver are differently partitioned in aqueous polymer two-phase systems consisting of dextran, polyethylene glycol, and sodium phosphate buffer. At a given polymer concentration, the amount of material partitioned in the top phase increases in the following order: rough microsomes less than smooth microsomes less than Golgi fragments. Counter-current distribution of Golgi fragments in the system consisting of 6.8% (w/w) dextran T500 and 6.8% polyethylene glycol 4,000 results in the separation of the fragments into three fractions; i.e. Fractions I, II, and III. NADH- and NADPH-cytochrome c reductase activities are detected almost exclusively in Fraction I, whereas the activities of galactosyltransferase, acid phosphatase, 5'-nucleotidase, and thiamine pyrophosphatase are maximal in Fraction III and minimal in Fraction I. The distribution of these enzymes suggests that Fraction I is similar to, though not identical with, microsomes, Fraction III resembles plasma membrane and lysosomes, and Fraction II is between the two. It is concluded that NADH- and NADPH-cytochrome c reductases are localized in a restricted region of the Golgi structure and that intra-Golgi differentiation seems to proceed in a discontinuous manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号