首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stranded DNA (ssDNA) oligonucleotides and double-stranded DNA (dsDNA) cassettes. Removing this nuclease improves both recombination frequency and the inheritance of mutations at the 3' ends of ssDNA and dsDNA. Extending this approach, we show that removing a set of five exonucleases (RecJ, ExoI, ExoVII, ExoX, and Lambda Exo) substantially improves the performance of co-selection multiplex automatable genome engineering (CoS-MAGE). In a given round of CoS-MAGE with ten ssDNA oligonucleotides, the five nuclease knockout strain has on average 46% more alleles converted per clone, 200% more clones with five or more allele conversions, and 35% fewer clones without any allele conversions. Finally, we use these nuclease knockout strains to investigate and clarify the effects of oligonucleotide phosphorothioation on recombination frequency. The results described in this work provide further mechanistic insight into recombineering, and substantially improve recombineering performance.  相似文献   

2.
Y Aratani  R Okazaki    H Koyama 《Nucleic acids research》1992,20(18):4795-4801
We have studied the mechanism of targeted recombination in mammalian cells using a hemizygous adenine phosphoribosyltransferase-deficient (APRT-) Chinese hamster ovary (CHO) cell mutant as a recipient. Three structurally different targeting vectors with a 5' or a 3', or both, end-deleted aprt sequence, in either a closed-circular or linear form, were transfected to the cells with a mutated aprt gene by electroporation. APRT-positive (APRT+) recombinant clones were selected and analyzed to study the gene correction events of the deletion mutation. Some half of 58 recombinant clones obtained resulted from corrections of the deleted chromosomal aprt gene by either gene replacement or gene insertion, a mechanism which is currently accepted for homologous recombination in mammalian cells. However, the chromosomal sequence in the remaining half of the recombinants remained uncorrected but their truncated end of the aprt gene in the incoming vectors was corrected by extending the end beyond the region of homology to the target locus; the corrected vector was then randomly integrated into the genome. This extension, termed end extension repair, was observed with all three vectors used and was as far as 4.6-kilobase (kb) or more long. It is evident that the novel repair reaction mediated by homologous recombination, in addition to gene replacement and gene insertion, is also involved in gene correction events in mammalian cells. We discuss the model which may account for this phenomenon.  相似文献   

3.
Toll-like receptor 3 (TLR3) can signal the production of a suite of cytokines and chemokines in response to double-stranded RNA (dsRNA) ligands or the dsRNA mimic poly(I-C). Using a human embryonic kidney 293T cell line to express human TLR3, we determined that poly(I-C)-induced signal could be significantly inhibited by single-stranded DNAs (ssDNAs), but not ssRNA or dsDNA. The ssDNA molecules that down-modulated TLR3 signaling did not affect TLR4 and do not require the hypomethylated CpG motif found in TLR9 ligands. The degree of modulation can be altered by the length, base sequence, and modification state of the ssDNAs. An inhibitory ssDNA was found to colocalize with TLR3 in transfected cells and in a cell line that naturally expresses TLR3. The inhibitory ssDNAs can compete efficiently with dsRNA for binding purified TLR3 ectodomains in vitro, while noninhibitory nucleic acids do not. The ssDNAs also decrease the levels of several cytokines produced by the human bronchial epithelial cell line BEAS-2B and by human peripheral blood mononuclear cells in response to poly(I-C) stimulation of native TLR3. These activities indicate that ssDNAs could be used to regulate the inflammatory response through TLR3.  相似文献   

4.
Synthetic triple helix-forming oligodeoxyribonucleotides (TFOs) have been used to alter gene expression and to induce targeted genome modification in cells and animals. However, the efficacy of such oligodeoxyribonucleotides (ODNs) depends on efficient intracellular delivery. A novel vector system was tested for the production of single-stranded DNA (ssDNA) to serve as a TFO in mouse cells. Mouse cells carrying a substrate that can report triplex-stimulated intrachromosomal recombination were transfected with a series of ssDNA vectors, and induced recombination was assayed. Transfection with a vector set designed to generate a 34 nt G-rich ssDNA capable of triplex formation at a 30 bp polypurine target site within the reporter substrate yielded recombinants at a frequency of 196 × 10–6, versus a background frequency of 45 × 10–6 in mock transfected cells. No induction was seen when a vector set lacking the TFO sequence insert was tested or when the component vectors were transfected individually. Vectors engineered to express a C-rich 34 nt sequence (not expected to form triplex under physiological conditions) had no effect over background. Primer extension analyses on lysates from transfected cells confirmed the production of the intended ssDNAs. These results suggest that ssDNA molecules of a defined sequence can be generated intracellularly using a novel vector system and that such molecules are active in mediating triplex-dependent chromosomal events. The ability to produce active TFOs within cells may provide a new foundation for triplex-based gene targeting strategies.  相似文献   

5.
The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths /=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.  相似文献   

6.
7.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

8.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

9.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

10.
Viruses contain three common types of packaged genomes; double-stranded DNA (dsDNA), RNA (mostly single and occasionally double stranded) and single-stranded DNA (ssDNA). There are relatively straightforward explanations for the prevalence of viruses with dsDNA and RNA genomes, but the evolutionary basis for the apparent success of ssDNA viruses is less clear. The recent discovery of four ssDNA virus genomes that appear to have been formed by recombination between co-infecting RNA and ssDNA viruses, together with the high mutation rate of ssDNA viruses provide possible explanations. RNA–DNA recombination allows ssDNA viruses to access much broader sequence space than through nucleotide substitution and DNA–DNA recombination alone. Multiple non-exclusive mechanisms, all due to the unique replication of ssDNA viruses, are proposed for this unusual RNA capture. RNA capture provides an explanation for the evolutionary success of the ssDNA viruses and may help elucidate the mystery of integrated RNA viruses in viral and cellular DNA genomes.  相似文献   

11.
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).  相似文献   

12.
13.
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.  相似文献   

14.
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD.  相似文献   

15.
The usefulness of adenovirus type 5 as a vector for homologous recombination was examined in CHO cells by using the adenine phosphoribosyltransferase (aprt) gene. Infection of a hemizygous CHO APRT- cell line containing a 3-bp deletion in exon 5 of the aprt gene with a recombinant adenovirus containing the wild-type gene resulted in restoration of the APRT+ phenotype at a frequency of 10(-5) to 10(-6) per infected cell. A relatively high frequency (approximately 6 to 20%) of the transductants appears to result from a homologous recombination event. The mutation on the chromosomal aprt gene is corrected in the homologous recombinants, and APRT expression is restored to a normal hemizygous level. Neither adenovirus nor exogenous promoter sequences are detected in the homologous recombinants. The remaining transductants result from random integration of the aprt gene with the adenovirus sequence. A number of adenovirus vectors containing different promoter sequences linked to the hamster aprt gene were constructed. A possible role for the promoter region in the homologous recombination event was indicated by the lack of homologous recombination in constructs lacking an active promoter.  相似文献   

16.
The uvsX gene product is essential for DNA repair and general recombination in T4 bacteriophage. The ability of UvsX protein to catalyze the homologous pairing of single-stranded DNA (ssDNA) with double-stranded DNA (dsDNA) in vitro was examined by electron microscopic (EM), nitrocellulose filter binding, and gel electrophoretic methods. Optimal joining was observed at ratios of UvsX protein:ssDNA of 2 nucleotides/protein monomer. At this level, the ssDNA was fully covered by UvsX protein as seen by EM, while the dsDNA appeared protein-free. Using this stoichiometry, the pairing of circular ssDNA with homologous supertwisted dsDNA was found to produce a high frequency of complexes in which a supertwisted dsDNA molecule was joined to a UvsX protein-ssDNA filament over a distance of less than 100 base pairs. These joints were labile to deproteinization and must have been paranemic. Pairing of linear ssDNA containing buried homology to the dsDNA produced identical structures. Pairing of fully homologous linear ssDNA and supertwisted dsDNA yielded D-loop joints (plectonemic) as seen by EM following deproteinization. Both the paranemic and the plectonemic joints were at sites of homology, as demonstrated by restriction cleavage of the complexes. Visualization of the joined complexes prior to deproteinization showed that 50% of the joints had the architecture of the paranemic joints, whereas in the remainder, a topologically relaxed dsDNA circle merged with the UvsX protein-ssDNA filament for a distance of 450 base pairs. The structure of the filament was not visibly altered in this region. These observations are similar, but not identical, to findings in parallel studies utilizing the RecA protein of Escherichia coli.  相似文献   

17.
A Chinese hamster ovary cell line hemizygous for a defective adenine phosphoribosyltransferase (aprt) gene was transfected with a plasmid, pAG100, capable of correcting the endogenous aprt mutation by targeted homologous recombination. In some experiments, pAG100 was transfected in combination with one of two 'competitor' plasmids. Competitor pCOMP-A was identical to pAG100 except that the aprt sequence on pCOMP-A had the same mutation as the endogenous aprt gene. Competitor pCOMP-B was identical to pAG100 except for a 763 bp deletion in the aprt sequence encompassing the site of mutation in the endogenous gene. Neither pCOMP-A nor pCOMP-B was capable of correcting the defect in the endogenous aprt gene via gene targeting. We asked whether cotransfection of a 4-fold excess of either competitor DNA molecule with pAG100 would reduce the efficiency of targeted correction of the endogenous aprt gene. We report that while plasmid pCOMP-B did not influence the efficiency of gene targeting by pAG100, plasmid pCOMP-A reduced the number of gene targeting events about 5-fold. These observations indicate that the initial homologous interaction between transfected DNA and a genomic target sequence occurs rapidly and that targeting efficiency is limited by a step subsequent to homologous pairing.  相似文献   

18.
Substrate specificities of bacterial and human AlkB proteins   总被引:5,自引:3,他引:2  
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.  相似文献   

19.
Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase   总被引:1,自引:0,他引:1  
In eukaryotes, numerous lines of evidence have coalesced into a convincing case that the MCM2-7 complex - a heterohexameric ATPase - is the replicative DNA helicase. However, almost nothing is known about how this enzyme functions in a cellular context. Some models for the mechanism of the MCM2-7 helicase envision that it translocates along single-stranded DNA (ssDNA), whereas, more recently, it is has been suggested that it pumps double-stranded DNA (dsDNA) through its central channel. In particular, one model in which a double hexamer of MCM2-7 pumps dsDNA towards the hexamer interface and extrudes ssDNA laterally as a result of torsional strain is gaining popularity. Here, we discuss existing models and propose a new variation in which a single hexamer is the functional unit of the helicase. Duplex DNA is pumped into MCM2-7 and, as it emerges from the complex, a rigid protein that we term the 'ploughshare' splits the duplex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号