首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (-)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR.  相似文献   

2.
The synthesis of 2-(hex-1-ynyl)adenosine derivatives substituted at the N6- and/or 5'-position was carried out on the basis that 2-(hex-1-ynyl)adenosine-5'-N-ethyluronamide (HENECA, 2) showed good affinity and different degree of selectivity for rat adenosine receptors. All new compounds were tested in radioligand binding and adenylyl cyclase assays with recently cloned human A1, A2A, A2B, and A3 adenosine receptors.  相似文献   

3.
Herein we report the synthesis and biological evaluation of some potent and selective A(1) adenosine receptor agonists, which incorporate a functionalised linker attached to an antioxidant moiety. N(6)-(2,2,5,5-Tetramethylpyrrolidin-1-yloxyl-3-ylmethyl)adenosine (VCP28, 2e) proved to be an agonist with high affinity (K(i)=50nM) and good selectivity (A(3)/A(1) > or = 400) for the A(1) adenosine receptor. N(6)-[4-[2-[1,1,3,3-Tetramethylisoindolin-2-yloxyl-5-amido]ethyl]phenyl]adenosine (VCP102, 5a) has higher binding affinity (K(i)=7 nM), but lower selectivity (A(3)/A(1)= approximately 3). All compounds bind weakly (K(i)>1 microM) to A(2A) and A(2B) receptors. The combination of A(1) agonist activity and antioxidant activity has the potential to produce cardioprotective effects.  相似文献   

4.
The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification.  相似文献   

5.
In this report, the strategy and outcome of expanding SAR exploration to improve solubility and metabolic stability are discussed. Compound 35 exhibited excellent potency, selectivity over A(1) and improved solubility of >4 mg/mL at pH 8.0. In addition, compound 35 had good metabolic stability with a scaled intrinsic clearance of 3 mL/min/kg (HLM) and demonstrated efficacy in the haloperidol induced catalepsy model.  相似文献   

6.
We report the synthesis, binding properties and intrinsic activity at MT(1) and MT(2) melatonin receptors of new dimeric melatonin receptor ligands in which two units of the monomeric agonist N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1) are linked together through different anchor points. Dimerization of compound 1 through the methoxy substituent leads to a substantial improvement in selectivity for the MT(1) receptor, and to a partial agonist behavior. Compound 3a, with a trimethylene linker, was the most selective for the MT(1) subtype (112-fold selectivity) and compound 3d, characterized by a hexamethylene spacer, had the highest MT(1) binding affinity (pK(iMT1)=8.47) and 54-fold MT(1)-selectivity. Dimerization through the aniline nitrogen of 1 abolished MT(1) selectivity, leading to compounds with either a full agonist or an antagonist behavior depending on the nature of the linker.  相似文献   

7.
We recently reported the identification of a novel human adenosine A3 receptor-selective agonist, (2S,3S,4R,5R)-3-amino-5-[6-[5-chloro-2-(3-methylisoxazol-5-ylmethoxy)benzylamino]purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide (CP-608,039), with 1,260-fold selectivity for the human A3 versus human A1 receptor (DeNinno et al., J Med Chem 46: 353-355, 2003). However, because the modest (20-fold) rabbit A3 receptor selectivity of CP-608,039 precludes demonstration of A3-mediated cardioprotection in rabbit models, we identified another member of this class, (2S,3S,4R,5R)-3-amino-5-[6-(2,5-dichlorobenzylamino)purin-9-yl]-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide (CP-532,903), which both retained human A3 receptor selectivity (210-fold; human A3/human A1 Ki: 23/4,800 nM) and had improved rabbit A3 receptor selectivity (90-fold; rabbit A3/rabbit A1 Ki: 23/2,000 nM). Infarct size was measured in Langendorff hearts or in vivo after 30 min of regional ischemia and 120 min of reperfusion. Five-minute perfusion with CP-532,903 before ischemia-reperfusion elicited a concentration-dependent reduction in infarct size in isolated hearts (EC50: 0.97 nM; maximum reduction in infarct size: 77%, P < 0.05 vs. control). Furthermore, administration of CP-532,903 (150 nM) at reperfusion also significantly reduced infarct size by 64% (P < 0.05 vs. control), which was not different (P > or = 0.05) from the cardioprotection provided by the same concentration of drug given before ischemia. The selective rabbit A1 receptor antagonist BWA1433 did not affect CP-532,903-dependent cardioprotection. In vivo, CP-532,903 (1 mg/kg) reduced infarct size by 50% in the absence of significant hemodynamic effects (mean arterial pressure, heart rate, rate-pressure product). CP-532,903 and CP-608,039 represent a novel class of human A3 receptor-selective agonists that may prove suitable for investigation of the clinical cardioprotective efficacy of A3 receptor activation.  相似文献   

8.
Computational studies based on the similarity of molecular electrostatic potential maps initiated the synthesis of the tricyclic target compounds 1 (FAUC 725) and 2. Receptor binding studies at the dopamine receptor subtypes D1, D2(long), D2(short), D3 and D4 showed that the azaindole 1 revealed D3 affinity (K(i)=0.54 nM) comparable to the lead pramipexole and enhanced selectivity over D2 and D4. Mitogenesis experiments indicated substantial intrinsic activity for the D3 selective dipropylamine 1. Based on the structure of (S)-3-PPP, bioisosteric replacement and conformational restriction leading to the test compound 2 was not fruitful.  相似文献   

9.
Synthesis and physicochemical properties of 7-mono- and 6,7-disubstituted dihydrooxazolo-[3,2-f]purinediones are described. Oxazolo[2,3-f]purinediones were synthesized by cyclization of 8-bromotheophylline with oxiranes. The obtained compounds (1-22) were evaluated for their affinity at adenosine A(1) and A(2A) receptors. They showed mainly adenosine A(2A) receptor affinity at low micromolar concentrations and A(2A) selectivity, for example, compound 9 with an octyl substituent at the oxazole ring displayed adenosine A(2A) receptor affinity (K(i)=0.998 microM) and at least 25-fold A(2A) versus A(1) selectivity. This compound was less selective (5-fold) towards human recombinant A(2B) and A(3) adenosine receptors. In this group of compounds active adenosine A(1) receptor antagonists were also identified. Oxazolopurinediones were evaluated in vivo as anticonvulsants in MES and ScMet tests and examined for neurotoxicity in mice (ip). Compounds with long alkyl chains showed anticonvulsant activity in both tests (in 100 and 300 mg/kg doses), accompanied by significant neurotoxicity. The anticonvulsant activity in rats (po) was higher and without signs of neurotoxicity. SAR and QSAR studies stressed the importance of lipophilic 7-substituents for both types of pharmacological activity. The volume of the substituent is, however, limited at the A(2A) AR, an n-octyl group being optimal.  相似文献   

10.
Murine adenosine 3'-phosphate 5'-phosphosulfate (PAPS) synthetase consists of a COOH-terminal ATP-sulfurylase domain covalently linked through a nonhomologous intervening sequence to an NH2-terminal adenosine 5'-phosphosulfate (APS) kinase domain forming a bifunctional fused protein. Possible advantages of bifunctionality were probed by separating the domains on the cDNA level and expressing them as monofunctional proteins. Expressed protein generated from the ATP-sulfurylase domain alone was fully active in both the forward and reverse sulfurylase assays. APS kinase-only recombinants exhibited no kinase activity. However, extension of the kinase domain at the COOH terminus by inclusion of the 36 residue linker region restored kinase activity. An equimolar mixture of the two monofunctional enzymes catalyzed the overall reaction (synthesis of PAPS from ATP + SO42-) comparably to the fused bifunctional enzyme. The importance of the domain order and organization was demonstrated by generation of a series of rearranged recombinants in which the order of the two active domains was reversed or altered relative to the linker region. The critical role of the linker region was established by generation of recombinants that had the linker deleted or rearranged relative to the two active domains. The intrinsic stability of the various recombinants was also investigated by measuring enzyme deactivation as a function of time of incubation at 25 or 37 degrees C. The expressed monofunctional ATP-sulfurylase, which was initially fully active, was unstable compared with the fused bifunctional wild type enzyme, decaying with a t1/2 of 10 min at 37 degrees C. Progressive extension by addition of kinase sequence at the NH2-terminal side of the sulfurylase recombinant eventually stabilized sulfurylase activity. Sulfurylase activity was significantly destabilized in a time-dependent manner in the rearranged proteins as well. In contrast, no significant deactivation of any truncated kinase-containing recombinants or misordered kinase recombinants was observed at either temperature. It would therefore appear that fusion of the two enzymes enhances the intrinsic stability of the sulfurylase only.  相似文献   

11.
Lehmann KA  Bass BL 《Biochemistry》2000,39(42):12875-12884
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5' neighbor preference (A approximately U > C = G), but, unlike ADAR1, also has a 3' neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.  相似文献   

12.
A series of 2-(N-acyl) and 2-(N-acyl)-N(6)-alkyladenosine analogues have been synthesized from the intermediate 2-amino-6-chloroadenosine derivatives (2b and 7) and evaluated for their affinity at the human A(1), A(2A), and A(3) receptors. We found that 2-(N-acyl) derivatives of adenosine showed relatively low affinity at A(2A) and A(3) receptors, while the N(6)-cyclopentyl substituent in 4h and 4i induced high potency [A(1) (K(i))=20.7 and 31.8 nM respectively] at the A(1) receptor and resulted therefore in increased selectivity for this subtype. The general synthetic methods and their binding studies are presented herein.  相似文献   

13.
Six analogues (1-6) of eudistomin D, a beta-carboline alkaloid from a marine tunicate Eudistoma olivaceum, were synthesized, and their affinity and selectivity for adenosine receptors A(1), A(2A), and A(3) were examined. All the synthetic compounds 1-6 did not show affinity to the adenosine A(1) receptor. Delta-carboline 3 exhibited the most potent affinity to the adenosine receptor A(3) among compounds 1-6. Delta-carbolines 3 and 4 showed better affinity than the corresponding beta-carbolines 1 and 2, respectively, while N-methylation (2, 4, and 6, respectively) of the pyrrole ring in 1, 3, and 5 resulted in the reduced affinity to the adenosine A(3) receptor. On the other hand, an eudistomin D derivative, BED, exhibited modest affinity to all the receptors A(1), A(2A), and A(3) but no selectivity.  相似文献   

14.
A series of 2-phenylethynyladenosine (PEAdo) derivatives substituted in the N6- and 4′-position was synthesised and the new derivatives were tested at the four human adenosine receptors stably transfected into Chinese hamster ovary (CHO) cells, using radioligand binding studies (A1, A2A, A3) or adenylyl cyclase activity assay (A2B). Binding studies showed that the presence of a phenyl ethynyl group in the 2 position of adenosine favoured the interaction with A3 receptors, resulting in compounds endowed with high affinity and selectivity for the A3 subtype. Additional substitution of the N6- and 4′-position increases both A3 affinity and selectivity. The results showed that the new compounds have a good affinity for the A3 receptor and in particular, the N6-methoxy-2-phenylethynyl-5′-N-methylcarboxamidoadenosine, with a Ki at A3 of 1.9 nM and a selectivity A1/A3 and A2A/A3 of 4,800- and 8,600-fold, respectively. Therefore, it is one of the most potent and selective agonists at the human A3 adenosine receptor subtype reported so far. Furthermore, functional assays of inhibition of 10 μM forskolin-stimulated cAMP production via the adenosine A3 receptor revealed that the new trisubstituted adenosine derivatives behave as full agonist of this receptor subtype. Docking analysis of these compounds was performed at a homology model of the human A3 receptor based on the bovine rhodopsin crystal structure as template, and the results are in accordance with the biological data.An erratum to this article can be found at  相似文献   

15.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

16.
A thermodynamic analysis of the binding to rat cortex adenosine A1 receptors of 5'-deoxyribose-N6-cyclopentyladenosine (full agonist) and several 8-alkylamino homologues of N6-cyclopentyladenosine (partial agonists) was performed. The intrinsic activity of the compounds was also evaluated by measuring the inhibition of forskolin-stimulated 3'-5'-cyclic adenosine monophosphate (c-AMP) levels in isolated epididymal rat adipocytes. Standard free energy (deltaG), enthalpy (deltaH ) and entropy (deltaS ) of the binding equilibrium were determined by affinity measurements carried out at different temperatures (0, 10, 20, 25, 30 degrees C). Affinity constants of drug-receptor interactions were obtained by displacement experiments in the presence of 1nM [3H]N6-cyclohexyladenosine. Levels of c-AMP were evaluated by performing competitive binding assays. As the affinity of the ligands was found to increase with temperature enhancement, the binding of full and partial agonists is therefore totally entropy-driven. Standard entropy values of a wide series of adenosine derivatives, including the compounds under examination, are strictly correlated to those of intrinsic activity. Similarly, deltaS values appear correlated to the in vivo ability of the adenosine derivatives to inhibit rat heart rate. Thermodymanic data of adenosine A1 receptor ligands are proposed as an indicator of their pharmacodynamics.  相似文献   

17.
The synthesis and biological evaluation of new potent opioid receptor-like 1 antagonists are presented. A structure–activity relationship (SAR) study of arylpyrazole lead compound 1 obtained from library screening identified compound 31, (1S,3R)-N-{[1-(3-chloropyridin-2-yl)-5-(5-fluoro-6-methylpyridin-3-yl)-4-methyl-1H-pyrazol-3-yl]methyl}-3-fluorocyclopentanamine, which exhibits high intrinsic potency and selectivity against other opioid receptors and hERG potassium channel.  相似文献   

18.
Some 8-alkynyladenosines were synthesized and evaluated for their adenosine receptor activity, utilizing radioligand binding studies (A(1), A(2A), A(3)) or adenylyl cyclase activity assays (A(2B)). Furthermore, the maximal induction of guanosine 5'-(gamma-thio)triphosphate ([35S]GTPgammaS) binding to G proteins and the inhibition of NECA-stimulated binding, in membranes of CHO cells which express the human A(3) receptor, were used to determine the intrinsic activity of these nucleosides at the A(3) adenosine receptor. The results showed that these new adenosine derivatives are very selective ligands for the A(3) receptor subtype and behave as adenosine antagonists, since they do not stimulate basal [35S]GTPgammaS binding, but inhibit NECA-stimulated binding. This is the first report that adenosine derivatives, with unmodified ribose moiety, are adenosine receptor antagonists.  相似文献   

19.
Anti-apoptotic Bcl-2 family proteins are important oncology therapeutic targets. To date, BH3 mimetics that abrogate anti-apoptotic activity have largely been directed at Bcl-2 and/or Bcl-xL. One observed mechanism of resistance to these inhibitors is increased Mcl-1 levels in cells exposed to such therapeutics. For this reason, and because Mcl-1 is important in the onset of lymphoid, myeloid, and other cancers, it has become a target of great interest. However, small molecule inhibitors displaying potency and selectivity for Mcl-1 are lacking. Identifying such compounds has been challenging due to difficulties in translating the target selectivity observed at the biochemical level to the cellular level. Herein we report the results of an HTS strategy coupled with directed hit optimization. Compounds identified have selective Mcl-1 inhibitory activity with greater than 100-fold reduced affinity for Bcl-xL. The selectivity of these compounds at the cellular level was validated using BH3 profiling, a novel personalized diagnostic approach. This assay provides an important functional biomarker that allows for the characterization of cells based upon their dependencies on various anti-apoptotic Bcl-2 proteins. We demonstrate that cells dependent on Mcl-1 or Bcl-2/Bcl-xL for survival are commensurately responsive to compounds that genuinely target those proteins. The identification of compound 9 with uniquely validated and selective Mcl-1 inhibitory activity provides a valuable tool to those studying the intrinsic apoptosis pathway and highlights an important approach in the development of a first-in-class cancer therapeutic.  相似文献   

20.
Novel 2,8-disubstituted adenosine derivatives were synthesized in good overall yields starting from 2-iodoadenosine. Binding affinities were determined for rat adenosine A(1) and A(2A) receptors and human A(3) receptors. Some compounds displayed good adenosine A(2A) receptor affinities, with most of the 2-(1-hexynyl)- and 2-[(E)-1-hexenyl]-substituted derivatives having K(i) values in the nanomolar range. Although the introduction of an 8-alkylamino substituents decreased the affinity for the adenosine A(2A) receptor somewhat, the selectivity for this receptor compared to A(3) was improved significantly. The 8-methylamino (12) and 8-propylamino (14) derivatives of 2-(1-hexynyl)adenosine (3), showed reasonable A(2A) receptor affinities with K(i) values of 115 and 82nM, respectively, and were 49- and 26-fold selective for the adenosine A(2A) receptor compared to the A(3) receptor. The compounds were also evaluated for their ability to stimulate the cAMP production in CHO cells expressing the human adenosine A(2A) receptor. 2-(1-Hexynyl)adenosine (3) and 2-[(E)-1-hexenyl]adenosine (4) both showed submaximal levels of produced cAMP, compared to the reference full agonist CGS 21680, and thus behaved as partial agonists. Most 8-alkylamino-substituted derivatives of 3, displayed similar cAMP production as 3, and behaved as partial agonists as well. Introduction of alkylamino groups at the 8-position of 4, showed a slight reduction of the efficacy compared to 4, and these compounds were partial agonists also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号