首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2'-Deoxy-2'-N-phthaloyl nucleosides were prepared from arabino nucleosides by triflate displacement with phthalimide in the presence of DBU. The corresponding phosphoramidites suitable for automated oligonucleotide synthesis were also synthesized. The scalability of described procedures was demonstrated on a 100-g scale preparation of 2'-deoxy-2'-amino-C phosphoramidite.  相似文献   

2.
Pon RT  Yu S 《Nucleic acids research》2005,33(6):1940-1948
Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated.  相似文献   

3.
A new method to produce a set of 20 high quality trinucleotide phosphoramidites on a 5-10 g scale each was developed. The procedure starts with condensation reactions of P-components with N-acyl nucleosides, bearing the 3 '-hydroxyl function protected with 2-azidomethylbenzoyl, to give fully protected dinucleoside phosphates 13. Upon cleavage of dimethoxytrityl group from 13, dinucleoside phosphates 16 are initially transformed into trinucleoside diphosphates 19 and then the 2-azidomethylbenzoyl is selectively removed under neutral conditions to generate trinucleoside diphosphates 5 in excellent yield. Subsequent 3 '-phosphitylation affords target trinucleotide phosphoramidites 7. When mutagenic oligonucleotides are synthesized employing mixtures of building blocks 7 as well as following the new synthetic protocol, representative oligonucleotide libraries are generated in good yields.  相似文献   

4.
5.
A variety of furan-modified nucleoside phosphoramidite monomers has been prepared and efficiently incorporated into oligonucleotides. These take part in Diels-Alder reactions with fluorescent maleimides to give fluorescent-labeled oligonucleotides. This represents a strategy for oligonucleotide labeling that is orthogonal to amine-based methods.  相似文献   

6.
Methylation of thymine residues during oligonucleotide synthesis.   总被引:8,自引:7,他引:1       下载免费PDF全文
Thymine residues in an oligodeoxyribonucleotide are subject to methylation at N3 by the internucleotide methyl phosphotriester linkages. This alkylation occurs most rapidly in the presence of a strong base such as DBU, but also takes place, at a much slower rate, during oligonucleotide synthesis.  相似文献   

7.
Guanine bases are sensitive to modification during automated DNA synthesis and processing reactions. Methods for the detection of two types of guanine modifications are described. The first method uses the higher reactivity of the modified G base to KMn04 oxidation than T bases, and thus allows detection by chemical DNA sequencing. The second method makes use of the Escherichia coli nucleotide excision repair enzyme UvrABC endonuclease which can detect "bulky" base modifications at each nucleotide in the synthetic DNA. Though the chemical structures of the two modifications are not known, they may be related. Both types of G modifications are often found in oligonucleotides synthesized by the methoxy-diisopropyl-phosphoramidite (MEDP) chemistry but non-detectable in the products of the beta-cyanoethyl-diisopropyl-phosphoramidite (CEDP) chemistry. The Rubin and Schmid pyrimidine-specific chemical DNA sequencing procedure (Rubin, C.M., and Schmid, C.W. (1980) Nucleic Acids Res. 8, 4613-4619) was found to be applicable to oligonucleotides synthesized by the CEDP chemistry, and to oligonucleotides synthesized by the MEDP chemistry if precautionary measures are taken to destroy the signals produced by the highly KMnO4 sensitive modified guanine bases. We also show how chemical DNA sequencing might be useful for diagnosing other chemical modifications in synthetic oligonucleotides.  相似文献   

8.
Acid binding and detritylation during oligonucleotide synthesis.   总被引:1,自引:0,他引:1       下载免费PDF全文
Under the conditions normally used for detritylation in oligonucleotide synthesis, the haloacetic acid binds strongly to the oligonucleotide. Acetonitrile also forms a complex with the deblocking acid, in competition with the oligonucleotide, and drastically slows detritylation. Incomplete removal of acetonitrile during the deblock step may slow the kinetics enough to result in incomplete detritylation of the oligonucleotide. Acid binding to the growing oligonucleotide causes striking chromatographic effects in the presence of high oligonucleotide mass densities. In packed-bed column reactors, at low linear velocities, the acid binding almost completely depletes free acid from the deblocking solution. This results in an advancing zone within which the oligonucleotide is saturated with acid. Detritylation occurs mostly in a narrow band at the front of the advancing saturated zone. Increasing the DCA concentration in order to achieve quick saturation can give faster and more complete detritylation while minimizing the exposure time of the oligonucleotide to acid.  相似文献   

9.
A new "polystyrene biotin support" has been synthesized for the solid support synthesis of the 3'-biotinylated oligonucleotides. Several oligos were synthesized and were analyzed by the HPLC and Mass Spec. Oligo analysis revealed that the biotin gets oxidized to "biotin sulfoxide" during the synthesis.  相似文献   

10.
The mechanism of the tetrazole-activated coupling step in the synthesis of oligonucleotides via phosphoramidites is studied with the help of model reactions: Treatment of diethoxydiisopropylaminophosphane with two equivalents of tetrazole resulted in a diethoxy-tetrazolophosphane, whose (31P)-NMR shift of 126 ppm is identical with the signal observed during internucleotide bond formation. A series of different related diethoxy-phosphorous-acid derivatives were also synthesized; their (31P)-NMR signals between 123.9 and 130.8 ppm are additional evidence for the intermediacy of a tetrazolide species. Further NMR investigations with more basic azoles showed that tetrazole is also active as a proton donor.  相似文献   

11.
Our work outlines the use of oxoammonium salts in a formal 1,2 addition process to olefins giving nucleoside analogs as products. Specifically, oxoammonium salts can be added to a solution of olefin and silylated heterocycle to give Methoxy TEMPO substituted nucleoside analogs after hydrolytic workup and chromatographic purification.  相似文献   

12.
During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery of E. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.  相似文献   

13.
The preparation of fully protected diisopropylamino-beta-cyanoethyl ribonucleoside phosphoramidites with regioisomeric purity greater than 99.95% is described. It is demonstrated that the combination of standard DNA protecting groups, 5'-O-DMT, N-Bz (Ade and Cyt), N-iBu (Gua), beta-cyanoethyl for phosphate, in conjunction with TBDMS for 2'-hydroxyl protection, constitutes a reliable method for the preparation of fully active RNA. Average stepwise coupling yields in excess of 99% were achieved with these synthons on standard DNA synthesizers. Two steps completely deprotect the oligoribonucleotide and workup is reduced to a fifteen minute procedure. Further, it is shown that the deprotected oligoribonucleotides are free from 5'-2' linkages. This methodology was applied to the chemical synthesis of a 24-mer microhelix, a 35-mer minihelix and two halves of a catalytic 'Hammerhead Ribozyme'. These oligoribonucleotides were directly compared in two distinct biochemical assays with enzymatically (T7 RNA polymerase) prepared oligoribonucleotides and shown to possess equal or better activity.  相似文献   

14.
M Septak 《Nucleic acids research》1996,24(15):3053-3058
Fully protected CPG-immobilized monomer, dimer and trimer oligonucleotides were used to study depurination during the chemical synthesis of oligonucleotides. Disappearance of the oligonucleotide during acid exposure time relative to an internal thymidine standard not subject to depurination was monitored by reverse phase HPLC analysis. Depurination half-times obtained for dichloroacetic acid (DCA) and trichloroacetic acid (TCA) in methylene chloride were found to be 3% DCA >> 15% DCA > 3% TCA. In order to understand the implications of depurination during DNA synthesis, the detritylation kinetics of model compounds DMT-dG-pT dimer and DMT-[17mer] mixed-base sequence were also measured. These results improve our ability to properly balance the contradictory goals of obtaining maximum detritylation with minimum depurination in oligonucleotide synthesis.  相似文献   

15.
In situ synthesis of oligonucleotide microarrays.   总被引:8,自引:0,他引:8  
This contribution presents a brief overall look of the methods for the preparation of various types of DNA microarrays and a thorough examination of the methods for in situ synthesis of oligonucleotide microarrays.  相似文献   

16.
A facile stereospecific synthetic method for alpha-anomeric 2'-deoxypyrimidine nucleoside unit utilizing aminooxazoline derivative of ribofuranose was investigated. Thus, easily accessible riboaminooxazoline derivative prepared by ribose and cyanamid was allowed to react with ethyl alpha-bromoethylacrylate to give corresponding adduct. The adduct was cyclized by strong base such as potassium t-butokiside. The resulted 2,2'-cyclonucleoside was then treated with acetyl bromide followed by n-butyltin hydride to give alpha-anomeric 3',5'-di-O-acetylthymidine. 3',5'-Di-O-acety groups of the nucleoside were easily removed by the action of excess of triethyl amine in methanol. Essentially same procedure afforded corresponding 2'-deoxyuridine, which was further, converted to alpha-anomeric 2'-deoxycytidine.  相似文献   

17.
18.
The formation of a disaccharide nucleoside (11) by O3'-glycosylation of 5'-O-protected 2'-deoxyadenosine or its N6-benzoylated derivative has been observed to be accompanied by anomerisation to the corresponding alpha-anomeric product (12). The latter reaction can be explained by instability of the N-glycosidic bond of purine 2'-deoxynucleosides in the presence of Lewis acids. An independent study on the anomerisation of partly blocked 2'-deoxyadenosine has been carried out. Additionally, transglycosylation has been utilized in the synthesis of 3'-O-beta-D-ribofuranosyl-2'deoxyadenosines and its alpha-anomer.  相似文献   

19.
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.  相似文献   

20.
Adenine-based, regioisomeric nucleoside phosphonates with ribo, xylo and arabino configuration were synthesized in the protected form suitable for the phosphotriester-like, solid-phase synthesis of oligonucleotides. Phosphonate moiety was protected by 4-methoxy-1-oxido-2-picolyl group and the furanose hydroxyl by the dimethoxytrityl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号