首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the steady state reaction progress in the scooting mode with highly processive turnover, Bacillus cereus sphingomyelinase (SMase) remains tightly bound to sphingomyelin (SM) vesicles (Yu et al., Biochim. Biophys. Acta 1583, 121-131, 2002). In this paper, we analyze the kinetics of SMase-catalyzed hydrolysis of SM dispersed in diheptanoylphosphatidyl-choline (DC7PC) micelles. Results show that the resulting decrease in the turnover processivity induces the stationary phase in the reaction progress. The exchange of the bound enzyme (E*) between the vesicle during such reaction progress is mediated via the premicellar complexes (Ei#) of SMase with DC7PC. Biophysical studies indicate that in Ei# monodisperse DC7PC is bound to the interface binding surface (i-face) of SMase that is also involved in its binding to micelles or vesicles. In the presence of magnesium, required for the catalytic turnover, three different complexes of SMase with monodisperse DC7PC (Ei# with i = 1, 2, 3) are sequentially formed with Hill coefficients of 3, 4 and 8, respectively. As a result, during the stationary phase reaction progress, the initial rate is linear for an extended period and all the substrate in the reaction mixture is hydrolyzed at the end of the reaction progress. At low mole fraction (X) of total added SM, exchange is rapid and the processive turnover is limited by the steps of the interfacial turnover cycle without becoming microscopically limited by local substrate depletion or enzyme exchange. At high X, less DC7PC will be monodisperse, Ei# does not form and the turnover becomes limited by slow enzyme exchange. Transferred NOESY enhancement results show that monomeric DC7PC in solution is in a rapid exchange with that bound to Ei# at a rate comparable to that in micelles. Significance of the exchange and equilibrium properties of the Ei# complexes for the interpretation of the stationary phase reaction progress is discussed.  相似文献   

2.
Sphingomyelinase (SMase), a water-soluble enzyme from Bacillus cereus, is shown to bind with high affinity to vesicles of sphingomyelin (SM) but not to vesicles of phosphatidylcholine (PC). The reaction progress by SMase bound to SM vesicles occurs in the scooting mode with virtually infinite processivity of the successive interfacial turnover cycles. Three conditions for the microscopic steady state during the reaction progress at the interface are satisfied: the bound SMase does not leave the interface even after all the SM in the outer layer is converted to ceramide; the SMase-treated vesicles remain intact; and the ceramide product does not exchange with SM present in excess vesicles or in the inner layer of the hydrolyzed vesicle. Within these constraints, on accessibility and replenishment of the substrate, the extent of hydrolysis in the scooting mode reaction progress is a measure of the number of vesicles containing enzyme. The slope of the Poisson distribution plot, for the enzyme per vesicle versus the logarithm of the fraction of the total accessible substrate remaining unhydrolyzed in excess vesicles, shows that a single 32 kDa subunit of SMase is fully catalytically active. The maximum initial rate of hydrolysis, at the limit of the maximum possible substrate mol fraction, X(S)*=1, is 400 s(-1) in H(2)O and 220 s(-1) in D(2)O, which is consistent with the rate-limiting chemical step. The integrated reaction progress suggests that the ceramide product does not codisperse ideally on the hydrolyzed vesicles. Furthermore, complex reaction progress seen with covesicles of SM+PC are attributed to slow secondary changes in the partially hydrolyzed SM vesicles.  相似文献   

3.
Sphingomyelinase (SMase), a water-soluble enzyme from Bacillus cereus, is shown to bind with high affinity to vesicles of sphingomyelin (SM) but not to vesicles of phosphatidylcholine (PC). The reaction progress by SMase bound to SM vesicles occurs in the scooting mode with virtually infinite processivity of the successive interfacial turnover cycles. Three conditions for the microscopic steady state during the reaction progress at the interface are satisfied: the bound SMase does not leave the interface even after all the SM in the outer layer is converted to ceramide; the SMase-treated vesicles remain intact; and the ceramide product does not exchange with SM present in excess vesicles or in the inner layer of the hydrolyzed vesicle. Within these constraints, on accessibility and replenishment of the substrate, the extent of hydrolysis in the scooting mode reaction progress is a measure of the number of vesicles containing enzyme. The slope of the Poisson distribution plot, for the enzyme per vesicle versus the logarithm of the fraction of the total accessible substrate remaining unhydrolyzed in excess vesicles, shows that a single 32 kDa subunit of SMase is fully catalytically active. The maximum initial rate of hydrolysis, at the limit of the maximum possible substrate mol fraction, XS*=1, is 400 s?1 in H2O and 220 s?1 in D2O, which is consistent with the rate-limiting chemical step. The integrated reaction progress suggests that the ceramide product does not codisperse ideally on the hydrolyzed vesicles. Furthermore, complex reaction progress seen with covesicles of SM+PC are attributed to slow secondary changes in the partially hydrolyzed SM vesicles.  相似文献   

4.
Berg OG  Yu BZ  Apitz-Castro RJ  Jain MK 《Biochemistry》2004,43(7):2080-2090
Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus forms a premicellar complex E(#) with monodisperse diheptanoylphosphatidylcholine (DC(7)PC) that is distinguishable from the E complex formed with micelles. Results are interpreted with the assumption that in both cases amphiphiles bind to the interfacial binding surface (i-face) of PI-PLC but not to the active site. Isothermal calorimetry and fluorescence titration results for the binding of monodisperse DC(7)PC give an apparent dissociation constant of K(2) = 0.2 mM with Hill coefficient of 2. The gel-permeation, spectroscopic, and probe partitioning behaviors of E(#) are distinct from those of the E complex. The aggregation and partitioning behaviors suggest that the acyl chains in E(#) but not in E remain exposed to the aqueous phase. The free (E) and complexed (E(#) and E) forms of PI-PLC, each with distinct spectroscopic signatures, readily equilibrate with changing DC(7)PC concentration. The underlying equilibria are modeled and their significance for the states of the PI-PLC under monomer kinetic conditions is discussed to suggest that the Michaelis-Menten complex formed with monodisperse DC(7)PC is likely to be E(#)S or its aggregate rather than the classical monodisperse ES complex.  相似文献   

5.
Digestion of dietary sphingomyelin (SM) is catalyzed by intestinal alkaline sphingomyelinase (SMase) and may have important implications in colonic tumorigenesis. Previous studies demonstrated that the digestion and absorption of dietary SM was slow and incomplete and that the colon was exposed to SM and its hydrolytic products including ceramide. In the present work, we studied the influences of glycerophospholipids and hydrolytic products of phosphatidylcholine (PC; i.e., lyso-PC, fatty acid, diacylglycerol, and phosphorylcholine) on SM hydrolysis induced by purified rat intestinal alkaline SMase in the presence of 10 mM taurocholate. It was found that various phospholipids including PC, phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidic acid (PA) inhibit alkaline SMase activity in a dose-dependent manner, with the degree of inhibition being in the order PA > PS > PI > PC > PE. Similar inhibition was also seen in a buffer of pH 7.4, which is close to the physiologic pH in the middle of the small intestine. When the effects of hydrolytic products of PC were studied, lyso-PC, oleic acid, and 1,2-dioleoyl glycerol also inhibited alkaline SMase activity, whereas phosphorylcholine enhanced SMase activity. However, in the absence of bile salt, acid phospholipids including PA, PS, and PI mildly stimulated alkaline SMase activity whereas PC and PE had no effect. It is concluded that in the presence of bile salts, glycerophospholipids and their hydrolytic products inhibit intestinal alkaline SMase activity. This may contribute to the slow rate of SM digestion in the upper small intestine.  相似文献   

6.
Subbaiah PV  Horvath P  Achar SB 《Biochemistry》2006,45(15):5029-5038
Sphingomyelin (SM), the second most abundant phospholipid in plasma lipoproteins, was previously shown to be a physiological inhibitor of the lecithin-cholesterol acyltransferase (LCAT) reaction. In this study, we investigated the effects of its metabolites, ceramide and ceramide phosphate, on the activity and fatty acid specificity of LCAT in vitro. Treatment of SM-containing substrate with SMase C, which hydrolyzes SM to ceramide, abolished the inhibitory effect of SM, whereas treatment with SMase D, which hydrolyzes it to ceramide phosphate, increased the level of inhibition. Although incorporation of ceramide into the substrate in the absence of SM activated the LCAT reaction only modestly, its co-incorporation with SM neutralized the inhibitory effect of SM. Ceramide phosphate, on the other hand, inhibited the LCAT reaction more strongly than SM. The effects of the sphingolipids on the phospholipase A and cholesterol esterification reactions of the enzyme were similar, indicating that they regulate the binding of phosphatidylcholine (PC) to the active site, rather than the esterification step. Incorporation of ceramide into the substrate stimulated the synthesis of unsaturated cholesteryl esters at the expense of saturated esters. However, these effects on fatty acid specificity disappeared when the PC substrates were incorporated into an inert diether PC matrix, suggesting that ceramide increases the availability of polyunsaturated PCs to the enzyme by altering the macromolecular structure of the substrate particle. Since the plasma ceramide levels are increased during inflammation, these results indicate that the activity and fatty acid specificity of LCAT may be altered during the inflammatory response.  相似文献   

7.
8.
HDLs have been proposed to have antiatherogenic properties because of their role in reverse cholesterol transport as lipid acceptors. To elucidate the phospholipid profile of these particles, we used electrospray ionization mass spectrometry to examine the phosphatidylcholine (PC) and sphingomyelin (SM) composition of HDLs purified from plasma and nascently generated in vitro from fibroblasts. We also quantitatively compared the phospholipids present in these lipoproteins between normal and Niemann-Pick disease type B (NPD-B) subjects characterized by sphingomyelinase (SMase) deficiency. We demonstrated that plasma HDLs from NPD-B were significantly enriched in SM by an average of 28%, particularly the palmitoyl SM (with an increase of 95%), which accounted for approximately 25-44% of total SM molecular species. Similarly, we observed an increase of approximately 63% in total SM levels in nascent HDLs prepared from NPD-B fibroblasts. Although PC levels in nascent HDLs were comparable between control and NPD-B cells, there was a 95% increase in total PC levels similar to that of SM in plasma HDLs extracted from NPD-B subjects. These data provide insight into the structure of HDLs and identify potential new roles for SMase in lipoprotein metabolism.  相似文献   

9.
Neuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4 °C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55–67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain.  相似文献   

10.
Butyric acid and sphingomyelin (SM) affect colonic tumorigenesis. We examined the potential link between butyrate stimulation and SM metabolism in colonic and hepatic cancer cell lines. After incubating HT29 and HepG2 cells with butyrate and other short-chain fatty acids, we found that butyrate increased acid but not neutral or alkaline sphingomyelinase (SMase) activity by 10- to 20-fold. The effects occurred after 16 h of incubation and were associated with reduced SM and phosphatidylcholine contents and increased ceramide levels. Northern blotting showed increased acid SMase mRNA levels in these cells after butyrate stimulation. Propionate was less potent, and acetate had no effect. No similar changes of acid phosphatase could be identified. At concentrations that increased acid SMase expression, butyrate inhibited cell proliferation, activated caspase 3, and induced apoptosis. However, the antiproliferative and apoptotic effects of butyrate preceded the changes of acid SMase and were not affected by knocking down acid SMase expression by small, interfering RNA. In addition, butyrate-induced acid SMase expression was not affected by blocking the caspase pathway. In conclusion, butyrate regulates SM metabolism by stimulating acid SMase expression in colon and liver cancer cells, but the increased acid SMase is not a critical mechanism for initiating the anticancer effects of butyrate.  相似文献   

11.
Sphingomyelin (SM) and free cholesterol (FC) are concentrated in the plasma membranes of eukaryotes; however, the physiological significance of their association is unclear. A common tool for studying the role of membrane SM is digestion with bacterial sphingomyelinase (SMase) C, which hydrolyzes SM to ceramide. However, it is not known whether the observed effects of SMase C treatment are due to the loss of SM per se or to the signaling effects of ceramide. In this study, we tested SMase D from Corynebacterium pseudotuberculosis, which hydrolyzes SM to ceramide phosphate, as an alternative probe. This enzyme specifically hydrolyzed SM in fibroblasts without causing accumulation of ceramide. Treatment of fibroblasts with SMase D stimulated translocation of PM FC to intracellular sites by <20% of the rate observed after SMase C digestion. The cells regenerated SM nearly completely within 5 h after SMase C treatment. However, even after 20 h, no regeneration occurred following SMase D digestion. These findings suggest that the translocation of PM FC caused by SMase C digestion is due to the cellular effects of ceramide rather than the loss of SM. Since ceramide phosphate does not appear to have such effects, we suggest that SMase D is a useful probe of membrane SM.  相似文献   

12.
Vesicle <--> micelle transitions are important phenomena during bile formation and intestinal lipid processing. The hepatocyte canalicular membrane outer leaflet contains appreciable amounts of phosphatidylcholine (PC) and sphingomyelin (SM), and both phospholipids are found in the human diet. Dietary SM enrichment inhibits intestinal cholesterol absorption. We therefore studied detergent-induced vesicle --> micelle transitions in SM-PC vesicles. Phase transitions were evaluated by spectrophotometry and cryotransmission electron microscopy (cryo-TEM) after addition of taurocholate (3-7 mM) to SM-PC vesicles (4 mM phospholipid, SM/PC 40%/60%, without or with 1.6 mM cholesterol). After addition of excess (5-7 mM) taurocholate, SM-PC vesicles were more sensitive to micellization than PC vesicles. As shown by sequential cryo-TEM, addition of equimolar (4 mM) taurocholate to SM-PC vesicles induced formation of open vesicles, then (at the absorbance peak) fusion of bilayer fragments into large open structures (around 200 nm diameter) coexisting with some multilamellar or fused vesicles and thread-like micelles and, finally, transformation into an uniform picture with long thread-like micelles. Incorporation of cholesterol in the SM/PC bilayer changed initial vesicular shape from spherical into ellipsoid and profoundly increased detergent resistance. Disk-like micelles and multilamellar vesicles, and then extremely large vesicular structures, were observed by sequential cryo-TEM under these circumstances, with persistently increased absorbance values by spectrophotometry. These findings may be relevant for bile formation and intestinal lipid processing. Inhibition of intestinal cholesterol absorption by dietary SM enrichment may relate to high resistance against bile salt-induced micellization of intestinal lipids in presence of the sphingolipid.  相似文献   

13.
The mechanism of crosstalk between signaling pathways coupled to the Trk A and p75(NTR) neurotrophin receptors in PC12 cells was examined. In response to nerve growth factor (NGF), Trk A activation inhibited p75(NTR)-dependent sphingomyelin (SM) hydrolysis. The phosphoinositide 3-kinase (PI 3-kinase) inhibitor, LY294002, reversed this inhibition suggesting that Trk A activation of PI 3-kinase is necessary to inhibit sphingolipid signaling by p75(NTR). In contrast, SM hydrolysis induced by neurotrophin-3 (NT-3), which did not activate PI-3 kinase, was uneffected by LY294002. However, transient expression of a constituitively active PI 3-kinase inhibited p75(NTR)-dependent SM hydrolysis by both NGF and NT-3. Intriguingly, NGF induced an association of activated PI 3-kinase with acid sphingomyelinase (SMase). This interaction localized to caveolae-related domains and correlated with a 50% decrease in immunoprecipitated acid SMase activity. NGF-stimulated PI 3-kinase activity was necessary for inhibition of acid SMase but was not required for ligand-induced association of the p85 subunit of PI 3-kinase with the phospholipase. Finally, this interaction was specific for NGF since EGF did not induce an association of PI 3-kinase with acid SMase. In summary, our data suggest that PI 3-kinase regulates the inhibitory crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways and that this interaction localizes to caveolae-related domains.  相似文献   

14.
We previously showed that degradation of cellular sphingomyelin (SM) by SMase C results in a greater stimulation of cholesterol translocation to endoplasmic reticulum, compared to its degradation by SMase D. Here we investigated the hypothesis that the effect of SMase C is partly due to the generation of ceramide, rather than due to depletion of SM alone. Inhibition of hydroxymethylglutaryl CoA reductase (HMGCR) activity was used as a measure of cholesterol translocation. Treatment of fibroblasts with SMase C resulted in a 90% inhibition of HMGCR, whereas SMase D treatment inhibited it by 29%. Treatment with exogenous ceramides, or increasing the endogenous ceramide levels also inhibited HMGCR by 60-80%. Phosphorylation of HMGCR was stimulated by SMase C or exogenous ceramide. The effects of ceramide and SMase D were additive, indicating the independent effects of SM depletion and ceramide generation. These results show that ceramide regulates sterol trafficking independent of cellular SM levels.  相似文献   

15.
The objective of this study was to examine the effect of dietary Chol supplementation on SM metabolism in rat liver plasma membranes, as well as on membrane leaflet fluidity characteristics. The membrane Chol content increased significantly during the first 20 days of dietary feeding, but returned to the level of the control group when the diet was continued for another ten days. The initially more fluid outer leaflet of the membrane rigidified as a result of the diet, obliterating the natural asymmetry in the fluidity of the membrane bilayer. Changes in the neutral SMase activity were also observed. These changes were in strong negative correlation (r = -0.978) with the Chol/Pr ratio and are consistent with the in vitro inhibition of SMase activity reported earlier. In contrast, the SM synthesizing enzymes, PC:Cer-PCh and PE:Cer-PEt transferase, were stimulated in course of the dietary Chol feeding. The activity of PC:Cer-PCh transferase was more strongly affected. Our results support the concept that SM metabolism is regulated coordinately with that of Chol. The present work could contribute to the better understanding of the parallel accumulation of SM and Chol observed in a variety of pathological conditions such as atherosclerosis and Niemann-Pick disease.  相似文献   

16.
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), a bacterial model for the catalytic domain of mammalian PI-PLC enzymes, was cross-linked by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride to probe for the aggregation and/or conformational changes of PI-PLC when bound to activating phosphatidylcholine (PC) interfaces. Dimers and higher order multimers (up to 31% of the total protein when cross-linked at pH 7) were observed when the enzyme was cross-linked in the presence of PC vesicles. Aggregates were also detected with PI-PLC bound to diheptanoyl-PC (diC(7)PC) micelles, although the fraction of cross-linked multimers (19% at pH 7) was lower than when the enzyme was cross-linked in the presence of vesicles. PI-PLC cross-linked in the presence of a diC(7)PC interface exhibited an enhanced specific activity for PI cleavage. The extent of this cross-linking-enhanced activation was reduced in PI-PLC mutants lacking either tryptophan in the rim (W47A and W242A) of this (betaalpha)(8)-barrel protein. The higher activity of the native protein cross-linked in the presence of diC(7)PC correlated with an increased affinity of the protein for two diC(7)PC molecules as detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In contrast to wild type protein, W47A and W242A had only a single diC(7)PC tightly associated when cross-linked in the presence of that activator molecule. These results indicate that (i) each rim tryptophan residue is involved in binding a PC molecule at interfaces, (ii) the affinity of the enzyme for an activating PC molecule is enhanced when the protein is bound to a surface, and (iii) this conformation of the enzyme with at least two PC bound that is stabilized by chemical cross-linking interacts more effectively with activating interfaces, leading to higher observed specific activities for the phosphotransferase reaction.  相似文献   

17.
Lipid lateral organization is increasingly found to modulate membrane-bound enzymes. We followed in real time the reaction course of sphingomyelin (SM) degradation by Bacillus cereus sphingomyelinase (SMase) of lipid monolayers by epifluorescence microscopy. There is evidence that formation of ceramide (Cer), a lipid second messenger, drives structural reorganization of membrane lipids. Our results provide visual evidence that SMase activity initially alters surface topography by inducing phase separation into condensed (Cer-enriched) and expanded (SM-enriched) domains. The Cer-enriched phase grows steadily as the reaction proceeds at a constant rate. The surface topography derived from the SMase-driven reaction was compared with, and found to differ from, that of premixed SM/Cer monolayers of the same lipid composition, indicating that substantial information content is stored depending on the manner in which the surface was generated. The long-range topographic changes feed back on the kinetics of Smase, and the onset of condensed-phase percolation is temporally correlated with a rapid drop of reaction rate. These observations reveal a bidirectional influence and communication between effects taking place at the local molecular level and the supramolecular organization. The results suggest a novel biocatalytic-topographic mechanism in which a surface enzymatic activity can influence the function of amphitropic proteins important for cell function.  相似文献   

18.
To investigate the role of sphingomyelin (SM) in the regulation of inflammatory reactions, we studied its effect on the activity and fatty acid specificity of group X secretory phospholipase A(2) (sPLA(2)X). Compared with other phospholipases, recombinant sPLA(2)X released more arachidonate from HDL. Pretreatment of HDL with sphingomyelinase (SMase) C activated the sPLA(2)X activity, but the release of arachidonate was stimulated less than that of linoleate. In liposomes containing synthetic phosphatidylcholines (PCs), sPLA(2)X showed no clear selectivity among the various sn-2 unsaturated fatty acids. However, when SM was incorporated into liposomes at 30 mol%, the enzyme exhibited strong preference for arachidonate, although its overall activity was inhibited. Degradation of liposomal SM by SMase C resulted in sPLA(2)X activation and loss of its arachidonate preference. Incorporation of ceramide into HDL or PC liposomes activated the enzyme activity, the release of arachidonate being stimulated more than that of linoleate. SM-deficient cells released more arachidonate than normal cells in response to exogenous sPLA(2)X. SMase pretreatment of normal cells stimulated the release of arachidonate by the exogenous sPLA(2)X. These results show that SM not only inhibits sPLA(2)X activity but also contributes to its selectivity for arachidonate, whereas ceramide stimulates the hydrolysis of arachidonate-containing PCs.  相似文献   

19.
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.  相似文献   

20.
The distribution of phosphatidylcholine (PC) and sphingomyelin (SM) between the solubilized (micellar) and non-solubilized (lamellar) fractions arising from bilayers composed of PC and SM, with or without cholesterol (Chol) has been measured under conditions of partial, incomplete solubilization by Triton X-100. Quantitation is achieved by 31P-NMR determination of the composition of mixed micelles in the range of bilayer-micelle coexistence. We find that the solubilized fraction of bilayers consisting of binary mixtures of PC and SM is rich in SM, as expected from previous data on solubilization of pure PC and pure SM liposomes. In contrast, after partial solubilization of ternary mixtures of PC, SM and Chol, the solubilized fraction becomes SM-poor, as observed in the partial solubilization of biomembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号