首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of the nervous tissue and distribution of the spine apparatus protein synaptopodin was performed in all layers of the brain sensorymotor cortex and hippocampal CA1 area in control rats and in the rats submitted to hypoxia at E14 and E18. It was found that beginning from the 20th day of postnatal development, in rats submitted to hypoxia both at E14 and E18 there was observed a statistically significant decrease of the mean number of labile synaptopodin-positive spines in the stratum radiatum molecular of the hippocampus area CA1. The decrease of the number of labile spines in the sensorymotor brain cortex was revealed only in the I layer beginning from the 20th day after birth in the rats submitted to hypoxia at E14. Maximal differences in the studied brain areas were observed in adult rats (exposed to hypoxia at E14: in the neocortex--a decrease by 23 +/- 10%, in hippocampus--by 24 +/- 8%, respectively). In adult animals, the increased degeneration of neuzons was not detected. It is suggested that disturbances in cognitive functions and in the capability for learning observed in rats after prenatal hypoxia can be due to a decrease of the amount of the labile synaptopodin-positive spines, which leads to a change of the structural-functional properties of neuronal networks and to a decrease of their plasticity.  相似文献   

2.
The performed study has shown that in rats submitted to hypoxia (3 h, 7% O2) at the 14th day of embryogenesis (E14) as compared with control animals, density of disposition of cells in the brain cortex decreased for the first month of postnatal ontogenesis (maximally by 40.8% by P20). In dying neurons, swelling of the cell body, lysis of organoids, and disturbance of the cytoplasmic membrane intactness were observed. Two waved of neuronal death by the mechanism of caspase-dependent apoptosis were revealed; the first involved large pyramidal neurons of the V layer (P10-20), the second--small pyramidal and non-pyramidal neurons of the II--III layers (P20-30). In neuropil of molecular layer, a decrease of the mean amount of labile synaptopodin-positive dendrite spines was observed, as compared with control. In rats exposed to hypoxia at E18, no changes of cell composition and structure of the nervous tissue were found in the studied brain cortex areas. Thus, formation of the cortex nervous tissue in postnatal ontogenesis of rats submitted to hypoxia at the period of neuroblast proliferation-migration is accompanied not only by a change of the cell composition of various cortex layers in early ontogenesis, but also by a decrease of the number of the synaptopodin-positive spines in molecular layer, the decrease being preserved in adult animals.  相似文献   

3.
The performed study has shown that in rats submitted to hypoxia (3 h, 7% O2) at the 14th day of embryogenesis (E14) as compared with control animals, density of distribution of cells in the brain cortex decreased for the first month of postnatal ontogenesis (maximally by 40.8% by P20). In dying neurons, swelling of the cell body, lyses of or ganoids, and disturbance of the cytoplasm membrane intactness were observed. Two waves of neuronal death by the mechanism of capsize-dependent apoptosis were revealed; the first involved large pyramidal neurons of the layer V (P10–20), the second-small pyramidal and non-pyramidal neurons of the layers II–III (P20–30). In neurosis of molecular layer, a decrease of the mean amount of labile synaptopodin-positive dendrite spines was observed, as compared with control. In rats exposed to hypoxia at E18, no changes of cell composition and structure of the nervous tissue were found in the studied brain cortex areas. Thus, formation of the cortex nervous tissue in postnatal ontogenesis of rats submitted to hypoxia at the period of neuroblast proliferation-migration is accompanied not only by a change of the cell composition of various cortex layers in early ontogenesis, but also by a decrease of the number of the synaptopodin-positive spines in the molecular layer, the decrease being preserved in adult animals.  相似文献   

4.
Using a model of acute hypoxia during pregnancy of rats, changes in the development of old (hippocampus) and new (sensorimotor) cortex associated with disturbance of neuronogenesis have been revealed in the studied brain structures at the period of action of a pathological factor. It was found that in rats submitted to hypoxia at the 13–14th days of embryogenesis, the number of degenerating neurons (including the pyramidal ones) at various levels of chromatolysis increased since the 5th day after birth; the increase was present for the entire first month of postnatal development. In the cortex of rat pups submitted to prenatal hypoxia there were observed deformation of neuronal bodies, vacuoles in the cytoplasm, shrinkage of apical dendrites of pyramidal neurons and delayed development of the structure (time of the appearance of spikes, formation of structural elements and the size of the cells) of the nervous tissue of the brain of the rat pups exposed to prenatal hypoxia. The columnar structure of the cortex was disturbed. In hippocampus, the process of degeneration of neurons started by 2–3 days later than in the cortex; by two weeks of postnatal development a massive degeneration and death of a part of neurons were also revealed. The morphometrical analysis showed a decrease in the number of neurons and their total area in the sensorimotor cortex (the layer V) and an increase in the number of glial elements at the 10–17th days after birth. In the hippocampus a decrease in the area occupied by neurons and in their size was detected in adult animals. The adult rats submitted to prenatal hypoxia were found to have disturbances of memory and learning. A correlation was shown between the disturbances of the conditions of embryonic development and the changes in the ability of learning and storage of new skills in the offspring.  相似文献   

5.
Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.  相似文献   

6.
The aim of study was to investigate the physiological development of the brain and behaviour in rats subjected to prenatal hypoxia on the 13.5th day of embryogenesis. We have found that such rats manifested a delayed physiological development and a change in nervous tissue of the sensorimotor cortex, as well a disturbed formation of motor responses during the first month of postnatal ontogenesis. During maturation these modifications were in part compensated, however we observed a decrease of the rats' ability to learn new forepaw movements. The destruction of the brain tissue and the modification of neurons composition in the sensorimotor cortex correlated with changes of behaviour at different stages of ontogenesis. Thus, changes of the conditions under which an organism develops during embryogenesis, predetermine a disturbance in ontogenesis and the learning ability.  相似文献   

7.
Young Wistar rats (aged 12, 25 and 35 days) were exposed to short-term (60 min) hypobaric hypoxia of 41 kPa. Cortical afterdischarges (ADs) were evoked by repeated direct stimulation of the sensorimotor cortex and the duration of ADs was monitored to examine the influence of magnesium sulphate injection (0.3 g/kg b.w.). In 12-day-old hypoxia-exposed rats, an increase of the mean duration of ADs after the repeated stimulation appeared. This effect was prevented by magnesium administration. In 25- and 35-day-old rats exposed to hypoxia a shortening of ADs was registered but no specific effect of magnesium sulphate pretreatment was observed. The brain susceptibility and ability to terminate evoked seizures is discussed.  相似文献   

8.
The protein-synthesizing system of hippocampal (CA1, CA3) and sensorimotor cortex neurons is damaged less and recovers much quicker in rats exposed to 8 Gy of γ-radiation under hypoxia/hypercapnia (body temperature 16–18°C) than under usual conditions, as evidenced by microfluorimetry and electron microscopy. The radioprotective effect does not cover the membrane structures (endoplasmic reticulum and Golgi complex), and their restoration is not so prompt.  相似文献   

9.
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.  相似文献   

10.
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed.  相似文献   

11.
12.
The paper summarizes results of studying the acute hypoxia model during pregnancy in rats. A relationship has been demonstrated between changes of conditions of embryonal development and formation in postnatal ontogenesis of molecular-cellular mechanisms of brain functioning and behavior of progeny. In animals exposed to hypoxia at the prenatal 13–14th day a delay of physiological development and formation of motor reactions has been revealed, which correlates with disturbances of structures of the sensorimotor brain system. Changes of properties of brain transmitter systems and signal transduction systems in the sensorimotor cortex and striatum as well as impairment of learning capability in adult animals were shown. The detected changes in development of an organism are due to disturbance of neurogenesis of the studied brain structures during the period of action of the pathological factor. The proposed model of acute hypoxia during pregnancy might also be effective for the search for, and testing of, new neuroprotective and nootropic drugs and for elaboration of strategy for treatment of pathology of the nervous system in children and adults submitted to prenatal hypoxia, as well as for correction of disturbances of nervous system functions, which develop in the process of aging.  相似文献   

13.
Incorporation of 14C-amino acid mixture into the cortex and cerebellum protein was studied in 7, 15, 30 days old rats after prenatal hypoxia. Prenatal hypoxic rats was shown to have alteration of the pattern of incorporation of label predecessors into brain protein. Prenatal hypoxia led to significant decrease of incorporation value at 30,000 molecular weight fractions. It is assumed that prenatal hypoxia results in selective changes of the brain protein synthesis.  相似文献   

14.
Some central cholinergic effects have been reported in animals after acute exposure to radiofrequency electromagnetic field at low intensity. We studied acetylcholine (ACh) release in the brain of freely moving rats exposed for 1 h during the day to a 2.45 GHz continuous wave radiofrequency field (RF) (2 or 4 mW/cm(2)) or exposed for 1 or 14 h during the night to a 800 MHz field modulated at 32 Hz (AM 200 mW/cm(2)). Measurements were performed by microdialysis using a membrane implanted through the upper CA1 region of the hippocampus. After irradiation with the 2.45 GHz RF, rats exposed at 2 mW/cm(2) did not show a significant modification of Ach release, whereas those exposed at 4 mW/cm(2) showed a significant 40% decrease in mean ACh release from hippocampus. This decrease was maximal at 5 h post exposure. Exposure to the 800 MHz RF for 1 h did not cause any significant effect, but exposure for 14 hrs induced a significant 43% decrease in ACh release during the period 11 p.m.-4 a.m. compared to control rats. In the control group we observed an increase of ACh release at the beginning of the night, which was linked to the waking period of rats. This normal increase was disturbed in rats exposed overnight to the 800 MHz RF. This work indicates that neurochemical modification of the hippocampal cholinergic system can be observed during and after an exposure to low intensity RF.  相似文献   

15.
彭文华  曹军  徐林 《动物学研究》2005,26(5):534-538
在麻醉Wistar大鼠上,结合脑室给药,应用双电极刺激技术刺激海马独立的两条侧枝/联合纤维通路、TA通路,并在CA1区放射层记录兴奋性突触后电位(EPSP),对海马CA1区锥体细胞近、远端树突EPSP的空间整合进行了初步探讨。结果表明,海马CA1区锥体细胞近、远端树突的空间整合都是亚线性的;近端树突的空间整合不受期望值大小的影响,但远端树突的空间整合随期望值增加而减小(更趋于亚线性)。此外,荷包牡丹碱没有影响EPSP的空间整合;但瞬时A型钾通道(IAK^+)的拮抗剂氨基吡啶-4却使得近端树突的空间整合趋于线性发展。本研究表明,海马CA1锥体细胞近、远端树突不同的被动、主动特征使它们具有了不同的空间整合特性。由于近端树突接受海马内部侧枝/联合纤维投射的信息,远端树突通过TA通路接受内嗅皮层投射的信息,由此提示,CA1区锥体细胞对来自海马内部和直接来自皮层的信息输入采用了不同的整合方式。  相似文献   

16.
Summary In the present study we have investigated the effect of prenatal hypoxia on expression of amyloid precursor protein (APP) and some metallopeptidases, which regulate β-amyloid peptide (Aβ) levels (neprilysin (NEP) and endothelin-converting enzyme (ECE-1)) in the cortex of rats during different periods of postnatal development. We have found that the level of APP in the sensorimotor cortex (SMC) of rats, analysed by Western blotting, increases from days 1 to 5 of postnatal development and then steadily decreases with age, with the most dramatic decline in the period from day 180 to 600. In the cortex of rats subjected to prenatal hypoxia on day 13.5 of embryogenesis, the postnatal levels of APP were higher than in the control. Secretion of the soluble form of APP (sAPP) by α-secretase was found to be the most active on day 30 of postnatal development and there was a significant decrease in the production of sAPP after prenatal hypoxia. NEP was found to be expressed in the cortex of rats only at the early stages of postnatal development and it was barely detectable in adult rats. The decline of NEP levels during ageing might contribute to accumulation of Aβ in later life in humans. Prenatal hypoxia resulted in a significant decrease of NEP expression on day 10, but its level was recovered when animals were preconditioned to mild hypoxia. A similar phenomenon was observed when the expression of ECE-1 was analysed. Overall, prenatal hypoxia leads to significant changes in the levels of APP and expression of metallopeptidases involved in amyloid metabolism during all postnatal life and preconditioning to hypoxia appeared to be neuroprotective.  相似文献   

17.
A comparative analysis of 339 protein fractions of cerebral cortex of rats both resistant and non-resistant to oxygen deficiency has been fulfilled by means of two-dimensional gel-electrophoresis. A specific group of 9 protein fractions with molecular weights in the range of 32-68 kD was found to be quantitatively changed under hypoxia influence. An activation of labile protein synthesis was a predominant response to acute hypoxia in the resistant rats, while the synthesizing processes in the non-resistant rats were rather weak. An adaptation to hypoxia mostly resulted in the decrease of quantitative representations of labile protein fractions and has been realizing in different ways in resistant and nonresistant rats. The data obtained seem to testify to the changes of protein synthesis under chronic hypoxia conditions in the cerebral cortex chiefly determined by fast adaptation mechanisms.  相似文献   

18.
Lee KH  Yu DH  Lee YS 《Neurochemical research》2009,34(6):1030-1038
A large amount of genetic information is devoted to brain development. In this study, the cortical development in rats at eight developmental time points (four embryonic [E15, E16, E18, E20] and four postnatal [P0, P7, P14, P21]) was studied using a rat brain 10K cDNA microarray. Significant differential expression was observed in 467 of the 9,805 genes represented on the microarray. Two major Gene Ontology classes—cell differentiation and cell–cell signaling—were found to be important for cortical development. Genes for ribosomal proteins, heterogeneous nuclear ribonucleoproteins, and tubulin proteins were up-regulated in the embryonic stage, coincidently with extensive proliferation of neural precursor cells as the major component of the cerebral cortex. Genes related to neurogenesis, including neurite regeneration, neuron development, and synaptic transmission, were more active in adulthood, when the cerebral cortex reached maturity. The many developmentally modulated genes identified by this approach will facilitate further studies of cortical functions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Activity of the phosphoinositide system of intracellular signalization was studied in offspring of rats exposed to severe hypobaric hypoxia at the 14–16th (group 1) or the 18–20th day (group 2) of prenatal hypoxia. At the age of 15 days, in animals of both experimental groups the basal level of triphosphoinositides in the brain cortex was shown to be elevated as compared with control. In the group 1, this parameter also remains elevated in adult animals. Application of glutamate produces a more pronounced increase of the inositephosphates in brain slices of the 15-day old rats of the group 1 than in slices of animals of the control group. In the 15-day old rats of the group 2, as compared with control, the phosphoinositide response to glutamate application was reduced. No changes in the inositephosphate levels were revealed after application of glutamate upon slices of adult (the 90-day old) control animals and of adult rats of the group 2. In slices of adult rats of the group 1, on the contrary, the glutamate application produced an increase of the inositephosphate content. The obtained data indicate essential changes of the phosphoinositide metabolism in the brain of rats exposed to action of hypoxia at the period of prenatal development. The character and the severity of these changes depend on the period of development when action of hypoxia occurs.  相似文献   

20.
The influence of adaptation to moderate hypoxia on anticonvulsive resistance of low tolerant rats has been investigated. Focal epilepsy was induced by penicillin application to sensorimotor cortex of the rat brain. Adaptation to hypoxia has been shown to increase the resistance of rats to epileptogenic penicillin effect which is manifested in the prolongation of the latent period of epileptiform discharges and less frequent epileptic fits. The mechanisms of the resistance increase remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号