首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirteen oleanane saponins (1-13), four of which were new compounds (1-4), were isolated from Pteleopsis suberosa Engl. et Diels stem bark (Combretaceae). Their structures were determined by 1D and 2D NMR spectroscopy and ESI-MS spectrometry. The compounds were identified as 2alpha,3beta,19alpha,23,24-pentahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (1), 2alpha,3beta,19beta,23,24-pentahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (2), 2alpha,3beta,19alpha,23-tetrahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (3), and 2alpha,3beta,6beta,19alpha,24-pentahydroxy-11-oxo-olean-12- en-28-oic acid 28-O-beta-D-glucopyranosyl ester (4). The presence of alpha,beta-unsaturated carbonyl function was not common in the oleanane class and the aglycons of these compounds were not found previously in the literature. Moreover, the isolated compounds were tested against Helicobacter pylori standard and vacA, and cagA clinical virulence genotypes. Results showed that compound 6 has an anti-H. pylori activity against three metronidazole-resistant strains (Ci 1 cagA, Ci 2 vacA, and Ci 3).  相似文献   

2.
The chemical study of the Antarctic octocoral Dasystenella acanthina has led to the isolation of the new polyoxygenated steroids (24R,22E)-24-hydroxycholest-4,22-dien-3-one (1), 23-acetoxy-24,25-epoxycholest-4-en-3-one (2), 12beta-acetoxycholest-4-en-3,24-dione (3), 12beta-acetoxy-24,25-epoxycholest-4-en-3-one (4), (22E)-25-hydroxy-24-norcholest-4,22-dien-3-one (5), 3alpha-acetoxy-25-hydroxycholest-4-en-6-one (6), and 3alpha,11alpha-diacetoxy-25-hydroxycholest-4-en-6-one (7), whose structures have been established by spectroscopic analysis. The absolute stereochemistry at C-24 in compound 1 has been determined through the 1H NMR study of the corresponding (R)- and (S)-MPA esters. All the new compounds showed significant activities as growth inhibitors of several human tumor cell lines. In addition, cytostatic and cytotoxic effects were also observed on selected tumor cell lines.  相似文献   

3.
Tirucallane triterpenes from the roots of Ozoroa insignis   总被引:1,自引:0,他引:1  
Liu Y  Abreu P 《Phytochemistry》2006,67(13):1309-1315
Eight tirucallane triterpenes, methyl 3alpha,24S-dihydroxytirucalla-8,25-dien-21-oate (2), methyl 3alpha-hydroxy-24-oxotirucalla-8,25-dien-21-oate (3), methyl 3alpha-hydroxy-25,26,27-trinor-24-oxotirucall-8-en-21-oate (4), 3alpha,25-dihydroxy-24-(2-hydroxyethyl)-tirucall-8-en-21-oic acid (5), 3alpha,24S,25-trihydroxytirucall-8-en-21-oic acid (6), 3alpha,24R,25-trihydroxytirucall-8-en-21-oic acid (7), 3alpha,25-dihydroxytirucall-8-en-21-oic acid (8), and methyl 3alpha,25-dihydroxytirucall-8-en-21-oate (9), together with alpha-elemolic acid methyl ester (1), were isolated from the roots of Ozoroa insignis. Their structures were elucidated on the basis of spectroscopic evidence.  相似文献   

4.
Yan J  Yi P  Chen B  Lu L  Li Z  Zhang X  Zhou L  Qiu M 《Phytochemistry》2008,69(2):506-510
Serratane triterpenoids were identified from Diphasiastrum complanatum (L.) Holub, including serratane-3alpha,14alpha,15alpha,20beta,21beta,24,29-heptol (1), 3alpha,20beta,21beta-trihydroxyserrat-14-en-24-oic acid (2), 3beta,20beta,21beta-trihydroxyserrat-14-en-24-oic acid (3), 3alpha,20beta,21beta-trihydroxy-16-oxoserrat-14-en-24-oic acid (4), and 16-oxolyclanitin-29-yl E-4'-hydroxyl-3'-methoxycinnamate (5) on the basis of their spectroscopic data as well as nine known analogs.  相似文献   

5.
Siddiqui BS  Ilyas F  Rasheed M  Begum S 《Phytochemistry》2004,65(14):2077-2084
The continued studies on the constituents of the fresh leaves and stem bark of Plumeria obtusa Linn. have led to the isolation and characterization of four new triterpenoids, dammara-12,20(22)Z-dien-3-one (1), dammara-12,20(22)Z-dien-3beta-ol (2), olean-12-en-3beta,27-diol (3), and 27-hydroxyolean-12-en-3-one (4) and 12 known compounds, which included eight triterpenoids; dammara-3beta,20(S),25-triol (5), urs-12-en-3beta-hydroxy-27-Z-feruloyloxy-28-oic acid (6), 3beta-hydroxyolean-12-en-28-oic acid (7), 3beta,27-dihydroxylupan-29-ene (8), 3beta-hydroxylupan-29-en-28-oic acid (9), 3beta-hydroxyursan-12-en-28-oic acid (11), 3beta-hydroxy-27-p-coumaroyloxy-olea-12-en-28-oic acid (12) and urs-12-en-3-one (15); an iridoid 1alpha-plumieride (10); a cardenolide 3alpha,14beta-dihydroxy-17beta-card-20(22)-enolide (13); a fatty acid ester methyl n-octadecanoate (14) and a steroid 3beta-hydroxy-delta5-stigmastane (16). The new constituents were characterized through spectroscopic studies including 1D (1H and 31C NMR) and 2D (COSY-45, NOESY, J-resolved, HMQC and HMBC) NMR and chemical transformations. This is the first report on the isolation of dammarane triterpenoids from P. obtusa. Compounds 5 and 6 are hitherto unreported from P. obtusa. The known compounds were identified by comparison of their spectral data with those reported in the literature.  相似文献   

6.
Yang QX  Zhang YJ  Li HZ  Yang CR 《Steroids》2005,70(10):732-737
Six new polyhydroxylated steroidal saponins, tupistrosides A-F (1-6), together with nine known steroids, were isolated from the fresh rhizomes of Tupistra yunnanensis. Their structures were elucidated to be (25S)-1beta,4beta,5beta-trihydroxy-spirostane-3beta-yl O-alpha-l-arabinopyranoside (1), 1beta,24beta-dihydroxy-spirost-5,25(27)-dien-3alpha-yl O-beta-d-glucopyranoside (2), (22S,25S)-1alpha,2beta,3alpha,5alpha-tetrahydroxy-furo-spirostane-26-yl O-beta-d-glucopyranoside (3), 1beta,3alpha,22 xi-trihydroxy-furost-5,25(27)-dien-26-yl O-beta-d-glucopyranoside (4), 26-O-beta-d-glucopyranosyl-1beta,22-dihydroxy-furost-5-en-3alpha-yl O-beta-d-glucopyranoside (5) and 22-methoxy-1beta,2beta,3beta,4beta,5beta,7alpha-hexahydroxy-furost-25(27)-en-6-one-26-yl O-beta-d-glucopyranoside (6), respectively, by means of spectroscopic analysis and the results of acid hydrolysis.  相似文献   

7.
Cytotoxic triterpenes from the aerial roots of Ficus microcarpa   总被引:7,自引:0,他引:7  
Six triterpenes, 3beta-acetoxy-12,19-dioxo-13(18)-oleanene (1), 3beta-acetoxy-19(29)-taraxasten-20alpha-ol (2), 3beta-acetoxy-21alpha,22alpha-epoxytaraxastan-20alpha-ol (3), 3,22-dioxo-20-taraxastene (4), 3beta-acetoxy-11alpha,12alpha-epoxy-16-oxo-14-taraxerene (5), 3beta-acetoxy-25-methoxylanosta-8,23-diene (6) along with nine known triterpenes, 3beta-acetoxy-11alpha,12alpha-epoxy-14-taraxerene (7), 3beta-acetoxy-25-hydroxylanosta-8,23-diene (8), oleanonic acid (9), acetylbetulinic acid (10), betulonic acid (11), acetylursolic acid (12), ursonic acid (13), ursolic acid (14), and 3-oxofriedelan-28-oic acid (15) were isolated from the aerial roots of Ficus microcarpa, and their structures elucidated by spectroscopic methods. The in vitro cytotoxic efficacy of these triterpenes was investigated using three human cancer cell lines, namely, HONE-1 nasopharyngeal carcinoma, KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells. Compound 8 and pentacyclic triterpenes 9-15 possessing a carboxylic acid functionality at C-28 showed significant cytotoxic activities against the aforementioned cell lines and gave IC50 values in the range 4.0-9.4 microM.  相似文献   

8.
Cell suspension cultures from hypocotyl-derived callus of Hyssopus officinalis were found to produce two sterols i. e. beta-sitosterol (1) and stigmasterol (2), as well as several known pentacyclic triterpenes with an oleanene and ursene skeleton. The triterpenes were identified as oleanolic acid (3), ursolic acid (4), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (5), 2alpha,3beta-dihydroxyurs-12-en-28-oic acid (6), 2alpha,3beta,24-trihydroxyolean-12-en-28-oic acid (7), and 2alpha,3beta,24-trihydroxyurs-12-en-28-oic acid (8). Compounds 5-8 were isolated as their acetates (6, 8) or bromolactone acetates (5, 7).  相似文献   

9.
Four ent-kaurenoic acid derivatives, 2beta,16alpha,17-trihydroxy-ent-kauran-19-oic acid (1), 3beta,16alpha,17-trihydroxy-ent-kauran-19-oic acid (2), 11alpha,15beta-dihydroxy-7-O-beta-d-glucopyranosyl-ent-kaur-16-en-19-oic acid (3) and 1alpha,15beta-dihydroxy-7-O-beta-d-glucopyranosyl-ent-kaur-16-en-19-oic acid (4), were isolated together with five known compounds, 1,5-dicaffeoyl-quinic acid (5), 2-O-glucosyloxy-4-methoxy-cinnamic acid (6), phenethyl alcohol glucoside (7), phenethyl-1-O-beta-d-apiofuranosyl (1-->2) beta-d-glucopyranoside (sayaendoside) (8) and 3,6-dihydroxy-beta-ion-9-ol (9) from the 50% aqueous acetone extract of the aerial parts of Mikania hirsutissima DC. (Compositae). Compounds 1-9 were tested for their proliferative activity toward peripheral blood mononuclear cells (hPBMC); compounds 1 and 2 showed significant activity (43.8% and 36.7%, at 100 microM, respectively) on the lymphocyte.  相似文献   

10.
Microbial metabolism of steviol and steviol-16alpha,17-epoxide   总被引:1,自引:0,他引:1  
Yang LM  Hsu FL  Chang SF  Cheng JT  Hsu JY  Hsu CY  Liu PC  Lin SJ 《Phytochemistry》2007,68(4):562-570
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.  相似文献   

11.
Gao H  Wang Z 《Phytochemistry》2006,67(24):2697-2705
A detailed phytochemical study on the 70% aqueous ethanol extract of stems of Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd led to isolation of five compounds, together with 12 known triterpenoid saponins and three known phenylethanoid glycosides. The structures of the five compounds were elucidated on the basis of analysis of spectroscopic data and physicochemical properties as: 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-glucopyranosyl ester (1), 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-D-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (2), 2alpha, 3beta, 23-trihydroxyurs-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (3), 3-beta-[(beta-D-glucopyranosyl-(1-->3)-O-alpha-L-arabinopyranosyl)oxy]-23-hydroxy-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (4) and 3-beta-[(alpha-L-xylopyranosyl-(1-->2)-O-alpha-L-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (5), named mutongsaponin A, B, C, D and E, respectively.  相似文献   

12.
Chemical investigation of the dichloromethane extract of the Red Sea marine sponge Lamellodysidea herbacea led to the isolation of four novel polyhydroxysteroids: cholesta-8-en-3beta,5alpha,6alpha,25-tetrol (1), cholesta-8(14)-en-3beta,5alpha,6alpha,25-tetrol (2), cholesta-8,24-dien-3beta,5alpha,6alpha-triol (3), and cholesta-8(14),24-dien-3beta,5alpha,6alpha-triol (4). Their structures were identified through 1D and 2D NMR studies. Relative stereochemistries were established by analysis of chemical shifts, coupling constants, and NOESY correlations. Compounds 3-4 showed antifungal activity against Candida tropicalis, with an inhibition diameter of 13 and 11 mm at 10 microg/disc, respectively.  相似文献   

13.
As part of a program directed towards the chemical syntheses of potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism, several routes have been explored for the preparation of 3 beta-hydroxy-15-keto-5 alpha-chol-8(14)-en-24-oic acid (IV). These investigations led to a remarkably specific and efficient side-chain oxidation of I. For example, treatment of the acetate of I with a mixture of trifluoroacetic anhydride, hydrogen peroxide, and sulfuric acid for 3.5 h at -2 degrees C gave a crude product consisting of 3 beta-acetoxy-24-trifluoroacetoxy-5 alpha-chol-8(14)-en-15-one (XI), 3 beta-acetoxy-24-hydroxy-5 alpha-chol-8(14)-en-15-one (XII), and 3 beta, 24-diacetoxy-5 alpha-chol-8(14)-en-15-one (XIII) in yields of 58%, 8%, and 3%, respectively, by HPLC analysis. XI was readily hydrolyzed to XII upon treatment with triethylamine in methanol at room temperature. Oxidation of XII with Jones reagent gave 3 beta-acetoxy-15-keto-5 alpha-chol-8(14)-en-24-oic acid (XVIII) from which its methyl ester (IX) was prepared by treatment with diazomethane. Mild alkaline hydrolysis of XVIII gave the 3 beta-hydroxy-delta 8(14)-15-keto C24 acid (IV). Hydrolysis of the crude product of the side-chain oxidation with K2CO3 in methanol gave 3 beta,24-dihydroxy-5 alpha-chol-8(14)-en-15-one (XIV) which was oxidized with Jones reagent to yield 3,15-diketo-5 alpha-chol-8(14)-en-24-oic acid (XV). Treatment of XV with diazomethane gave its methyl ester (XVI) which, upon controlled reduction with NaBH4, yielded methyl 3 beta-hydroxy-15-keto-5 alpha-chol-8(14)-en-24-oate (XVII). Compound IX was also prepared by an independent route. Full 1H and 13C NMR assignments are presented for 12 new compounds. IV caused a approximately 56% reduction of the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells at a concentration of 2.5 microM. In contrast, the corresponding 3,15-diketo acid XV had no detectable effect on reductase activity under the same conditions.  相似文献   

14.
Chemical synthesis of 3 alpha,6 beta,7 alpha,12 beta- and 3 alpha,6 beta,7 beta,12 beta-tetrahydroxy-5 beta-cholan-24-oic acids is described. 3 alpha,12 beta-Dihydroxy-5 beta-chol-6-en-24-oic acid used as the starting material in the synthesis was prepared via oxidation of 3 alpha,12 alpha-dihydroxy-5 beta-chol-6-en-24-oic acid 3-hemisuccinate at C-12 followed by reduction with potassium/tertiary amyl alcohol. alpha-Epoxidation of the ester diacetate of 3 alpha,12 beta-dihydroxy-5 beta-chol-6-en-24-oic acid with m-chloroperbenzoic acid followed by cleavage of the epoxide with acetic acid and alkaline hydrolysis yielded 3 alpha,6 beta,7 alpha,12 beta-tetrahydroxy-5 beta-cholan-24-oic acid (overall yield 25%). N-Methylmorpholine-N-oxide-catalyzed osmium tetroxide oxidation of the ester diacetate of 3 alpha,12 beta-dihydroxy-5 beta-chol-6-en-24-oic acid followed by alkaline hydrolysis yielded 3 alpha,6 beta,7 beta,12 beta-tetrahydroxy-5 beta-cholan-24-oic acid (overall yield 33%). The structures of the synthesized bile acids were confirmed from their proto nuclear magnetic resonance and mass spectral fragmentation patterns.  相似文献   

15.
Wang XN  Fan CQ  Yue JM 《Steroids》2006,71(8):720-724
Three new pregnane steroids, 2beta,3beta,5beta-trihydroxy-pregn-20-en-6-one (1), 3beta-hydroxy-5alpha-pregn-7,20-dien-6-one (2), and 3beta-acetoxy-5alpha-pregn-7,20-dien-6-one (3) were isolated from the twigs and leaves of Turraea pubescens, and were structurally elucidated on the basis of spectroscopic data and chemical method.  相似文献   

16.
Seven new ent-kauranoid derivatives ent-7alpha,18-dihydroxykaur-16-en-3-one, ent-18-acetoxy-3beta,7alpha-dihydroxykaur-15-en-17-al, ent-3beta-acetoxy-7alpha,18-dihydroxykaur-15-en-17-al, ent-18-acetoxy-3beta,7alpha,17-trihydroxykaur-15-ene, ent-3beta-acetoxy-7alpha,17,18-trihydroxykaur-15-ene, ent-18-acetoxy-3beta,7alpha,17-trihydroxy-15beta,16beta-epoxykaurane and ent-3beta-acetoxy-7alpha,17,18-trihydroxy-15beta,16beta-epoxykaurane have been isolated from Sideritis moorei. The structures of these compounds have been established by spectroscopic means and chemical correlations.  相似文献   

17.
Bioassay-guided fractionation of a MeOH extract of the rhizomes of Astilbe koreana (Saxifragaceae), using an in vitro protein tyrosine phosphatase 1B (PTP1B) inhibitory assay, resulted in the isolation of a new triterpene, 3alpha,24-dihydroxyolean-12-en-27-oic acid (4), along with four triterpenes, 3-oxoolean-12-en-27-oic acid (1), 3beta-hydroxyolean-12-en-27-oic acid (beta-peltoboykinolic acid; 2), 3beta-hydroxyurs-12-en-27-oic acid (3), and 3beta,6beta-dihydroxyolean-12-en-27-oic acid (astilbic acid; 5). Compounds 1-5 inhibited PTP1B with IC50 values of 6.8+/-0.5, 5.2+/-0.5, 4.9+/-0.4, 11.7+/-0.9, and 12.8+/-1.1 microM, respectively. Our results indicate that 3-hydroxyl group and a carboxyl group in this type of triterpenes may be required for the activity, while addition of one more hydroxyl group at C-6 or C-24 may be responsible for a loss of activity. Thus, compounds 2 and 3 which possess only one hydroxyl group at C-3 and a carboxyl group at C-27 could be potential PTP1B inhibitors.  相似文献   

18.
From the fermentation broth of an unidentified Phomopsis sp. (strain HKI0458) isolated from the mangrove plant Hibiscus tiliaceus, four A-seco-oleane-type triterpenes, namely 3,4-seco-olean-11,13-dien-4,15alpha, 22beta,24-tetraol-3-oic acid (1), 3,4-seco-olean-11,13-dien-4,7beta,22beta,24-tetraol-3-oic acid (2), 3,4-seco- olean-13-en-4,7,15,22,24-pentaol-3-oic acid (3), and 3,4-seco-olean-13-en-4,15,22,24-tetraol-3-oic acid (4) were obtained. Their structures were elucidated by extensive spectroscopic (UV, IR, FABMS, and 2D NMR) data analyses.  相似文献   

19.
Constituents of various wood-rotting basidiomycetes   总被引:7,自引:0,他引:7  
Phytochemical investigation of n-hexane and methanol extracts of fruiting bodies of the wood-rotting fungi Fomitopsis pinicola. Ganoderma lipsiense, Fomes fomentarius and Gloeophyllum odoratum led to the isolation and identification of several triterpene derivatives and some aromatic compounds derived from lignin. These are the new natural products, namely, pinicolic acid E (16alpha-hydroxy-3-oxolanosta-8,24-dien-21-oic acid) and pinicolol C (3-oxolanosta-7,9(11),24-trien-15alpha,21-diol) from the crust of F. pinicola, ganoderenic acid D [(E)-7beta-hydroxy-3,11,15,23-tetraoxolanosta-8,20(22)-di en-26-oic acid] and ganoderic acid N (7beta,20-dihydroxy-3,11,15,23-tetraoxolanost-8-en-26-oic acid) from G. lipsiense and ergosterol peroxide (5alpha,8alpha-epi-dioxyergost-6-en-3beta-ol) as well as ergost-7-en-3-one from F. fomentarius. From G. odoratum, dehydroeburicoic acid [24-methylene-3-oxolanosta-7,9(11)-dien-21-oic acid], the dimethylacetal of 4,4,14alpha-trimethyl-24-oxo-5alpha-chol-8-en-21-oic acid and some aromatic compounds, of which 1-(4'-methoxyphenyl)-1,2-ethandiol is a new natural product, were isolated. Furthermore, a complete set of 13C NMR data of the steryl esters 3beta-linoleyloxyergosta-7,24(28)-diene, 3beta-linoleyloxyergosta-7,24-diene and 3beta-linoleyloxyergost-7-ene, which could be identified as a mixture in all investigated fungi, could be recorded. It was proved by HPLC and TLC investigations, that the crust on top of the fruiting bodies of F. pinicola consists of lanostane derivatives.  相似文献   

20.
Zhao M  Xu LJ  Che CT 《Phytochemistry》2008,69(2):527-532
A nor-protostane, alisolide (1), a rearranged protostane, alisol O (2), and a 2,3-seco-protostane triterpene, alisol P (3), were isolated from the rhizomes of Alisma orientale, along with eight known protostane triterpenes. The structures were elucidated to be (17S)-3,11-dioxo-23-nor-protost-12-en-23(17)-olide, 3-oxo-11beta,23-dihydroxy-24,24-dimethyl-26,27-dinorprotost-13(17)-en-25-oic acid, and (20R,23S,24R)-23,24,25-trihydroxy-2,3-seco-protost-13(17)-en-3-oic acid 2,11beta-lactone, respectively, by interpretation of spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号