首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The dental follicle (DF) surrounding the developing tooth germ is an ectomesenchymal tissue composed of various cell populations derived from the cranial neural crest. Human dental follicle cells (HDFC) are believed to contain precursor cells for cementoblasts, periodontal ligament cells, and osteoblasts. Bone morphogenetic proteins (BMPs) produced by Hertwig's epithelial root sheath or present in enamel matrix derivatives (EMD) seem to be involved in the control of DF cell differentiation, but their precise function remains largely unknown. We report the immunolocalization of STRO-1 (a marker of multipotential mesenchymal progenitor cells) and BMP receptors (BMPR) in DF in vivo. In culture, HDFC co-express STRO-1/BMPR and exhibit multilineage properties. Incubation with rhBMP-2 and rhBMP-7 or EMD for 24 h increases the expression of BMP-2 and BMP-7 by HDFC. Long-term stimulation of these cells by rhBMP-2 and/or rhBMP-7 or EMD significantly increases alkaline phosphatase activity (AP) and mineralization. Expression of cementum attachment protein (CAP) and cementum protein-23 (CP-23), two putative cementoblast markers, has been detected in EMD-stimulated whole DF and in cultured HDFC stimulated with EMD or BMP-2 and BMP-7. RhNoggin, a BMP antagonist, abolishes AP activity, mineralization, and CAP/CP-23 expression in HDFC cultures and the expression of BMP-2 and BMP-7 induced by EMD. Phosphorylation of Smad-1 and MAPK is stimulated by EMD or rhBMP-2. However, rhNoggin blocks only Smad-1 phosphorylation under these conditions. Thus, EMD may activate HDFC toward the cementoblastic phenotype, an effect mainly (but not exclusively) involving both exogenous and endogenous BMP-dependent pathways.  相似文献   

2.
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.  相似文献   

3.
Bone morphogenetic proteins (BMPs) have multiple functions in the development and growth of skeletal and extraskeletal tissues. Therefore, BMPs may regulate the regeneration of periodontal tissue. To investigate this issue, we examined the effects of BMP-4, -5 and -6 on DNA synthesis and the expression of bone-related proteins in cultures of human periodontal ligament (HPL) cells. The expression of bone-related proteins was determined by Real-time polymerase chain reaction and enzyme linked immunosorbent assay in cultures of HPL cells. DNA synthesis was estimated by measuring bromoderoxyuridine incorporation. It was found that BMP-4, -5 and -6 enhanced DNA synthesis dose-dependently. BMP-4 and -5 increased the levels of osteopontin, BMP-2, alkaline phosphatase and core binding factor alpha 1 mRNAs. BMP-6 stimulated the expression of osteopontin, BMP-2, ALPase and osteoprotegerin. These findings show that BMP-4, -5 and -6 have different actions on the expression of bone-related proteins and may play a role in the regeneration of periodontal tissue by promoting cell proliferation and protein expression.  相似文献   

4.
To explore the correlation between the trace elements in the proximal femur and BMP-2, BMP-7 and STRO-1+ cells in hip replacement, and analyze the therapeutic effect of prosthesis loosening in clinic. Fifty-one patients undergone the first hip replacement in xxx hospital from August 2016 to August 2019 were selected as the study subjects, including 26 females and 25 males, aged 52–89 years. The bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro for flow cytometry, and the string-1+ in BMSCs was detected and analyzed. After that, the expression of bone morphogenetic protein 2 (BMP-2) and bone morphogenetic protein 7 (BMP-7) in the cells were detected by enzyme-linked immunosorbent assay, the content of trace elements in the supernatant was detected by radioimmunoassay, and the collected data were analyzed statistically. In the analysis of the content of trace elements, it was found that the correlation between trace elements was dependent on the separation area, and all trace elements had no correlation with BMP2. Ca2+, Mg2+ were correlated with the level of BMP7 and Ca2+, VD3 was correlated with the percentage of STOR-1+ cells. Further analysis showed that the correlation between trace elements was dependent on bone mineral density (BMD) area, and there was a positive correlation between vitamin D3 (VD3), parathyroid hormone (PTH), zinc, and BMD in zone 7. To sum up, it is found that trace elements may be related to prosthesis loosening, which provides experimental basis for the treatment of prosthesis loosening later.  相似文献   

5.
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.  相似文献   

6.
7.
Kim DK  Song KD  Kim JN  Park TS  Lim JM  Han JY 《Theriogenology》2006,65(3):658-668
We evaluated whether bone morphogenetic proteins (BMPs) increased the reactivity of chicken stage X blastodermal cells to the germ cell marker, anti-stage-specific embryonic antigen (SSEA)-1 antibody. In Experiment 1, blastodermal cells cultured on a feeder layer of SIM mouse embryo-derived thioguanine and ouabain resistant (STO) cells were treated with different doses of BMP-2 and/or BMP-4, and the anti-SSEA-1 antibody reactivity of cultured cells was examined 48 h later. A significant (P < 0.05) increase in the number of anti-SSEA-1 antibody-positive cells was detected after the addition of 75 or 100 ng/ml BMP-2. Neither 0-20 ng/ml BMP-4 nor the combined addition of 75 ng/ml BMP-2 with either 10 or 15 ng/ml BMP-4 increased reactivity more than that induced by 75 ng/ml BMP-2 alone. Results of the qualification and quantification of BMP receptor kinase (BRK)-1, BRK-2, and BRK-3 using RT-PCR and real-time PCR showed that all three receptors were detected in blastodermal cells treated with BMPs, intact stage X embryos and 5.5-day-old embryonic gonads, but no expression was detected in STO feeder cells. In Experiment 2, the treatment of stage X embryos with different doses of BMP-2 (0.15-3 ng/embryo) or BMP-4 (0.02-0.4 ng/embryo) did not affect the reactivity of 5.5-day-old embryonic gonadal cells to the anti-SSEA-1 antibody. BRK-1 expression was selectively increased in stage X embryos after the infusion of 3ng BMP-2 than after no infusion, but no changes in other BRKs' expression were detected. In conclusion, the addition of BMP-2 to culture medium in the presence of STO feeder cells promoted the reactivity of blastodermal cells to anti-SSEA-1 antibody, which might contribute to the generation of chicken primordial germ cell precursor or germ cell-like cells. The relationship between BMP action and BRK expression was further discussed.  相似文献   

8.
9.
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/− as well as USAG-1−/− rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.  相似文献   

10.
11.
Although Hertwig’s epithelial root sheath (HERS) performs an important function in the formation of the tooth root, the developmental mechanisms that control HERS growth and differentiation remain to be thoroughly elucidated. Bone morphogenetic protein 4 (BMP4), which is secreted by mesenchymal cells, acts on the dental epithelium as a regulator of cell differentiation during crown formation. In an effort to determine whether BMP4 specifically regulates the development of HERS in the dental epithelium, we assessed the localizations of BMP4, BMP receptor-IB (BMPR-IB), and BMPR-II during molar root formation in the mouse. HERS cells were shown to express BMPR-IB and BMPR-II. BMP4-positive cells were detected densely in the dental papillae around HERS, thereby suggesting that BMP4 participated in HERS formation. Beads soaked in BMP4, NOGGIN, or phosphate-buffered saline (PBS) were implanted into the pulp cavity under culture conditions, and the length of HERS was evaluated with regard to the proliferating cells. After 12 h, both groups exhibited a similar HERS developmental pattern, with the length and shape of HERS bearing a close resemblance to one another. However, after 48 h, the observed HERS elongation was significantly shorter in the BMP4-treated group. In addition, proliferative cell nuclear antigens were detectable only in the NOGGIN- and PBS-treated groups. These findings demonstrate that mesenchymally expressed BMP4 regulates HERS development by preventing elongation and maintaining cell proliferation. BMP4 may, therefore, prove useful as a root-formation regulatory agent in a variety of tissue-engineering applications. Akihiro Hosoya and Ji-Youn Kim contributed equally to this work. This work was supported by the Seoul R&BD Program (NT070139).  相似文献   

12.
Bone morphogenetic proteins (BMPs) are cytokines which are important for kidney homeostasis but also have role in the some renal diseases and renal cell carcinoma (RCC). In the last three decades incidence of RCC was constantly increased and the role of different molecular biomarkers in RCC is explored'. We analyzed expression of BMP-7, their receptors (BMPR-IA, BMPR-IB, BMPR-II) and proteins of their signaling pathway (pSmad1/5/8) in sixteen renal cancer samples and paired normal tissue. Tissue samples were analyzed by immunohistochemistry and Western blot. BMP-7, BMP receptors and pSmad1/5/8 were expressed in all structures of normal kidney but dominantly in the proximal tubular cells. In the cancer samples their expression was also noticed. Comparison of BMPs between different tissue showed increased expression of BMPR-IB and pSmad 1/5/8 and decreased expression of BMP-7 and BMPR-II in RCC compared to normal kidney. BMPR-IA was detected with immunohistochemistry but with Western blot attenuated signal was presented. BMP-7, BMP receptors and pSmad1/5/8 were showed in normal kidney and RCC. Detected alterations of BMP-7, BMP receptors and pSmad expression in RCC suggested their possible role in tumorigenesis of kidney cancer.  相似文献   

13.
It is known that the dental follicle (DF) consists of progenitor cells that give rise to the cementum, periodontal ligament, and alveolar bone; but little information is available about the regulation of DF cell differentiation into either cementogenic or osteogenic cell lineages for the regeneration of diseased periodontal tissue. Here, we investigated the roles of DF, Hertwig’s epithelial root sheath (HERS), and pulp cells in the cementum and during alveolar bone formation. We cultured these cells; transplanted them alone or in combination into immunocompromised mice; and observed their effects at 6 and 12 weeks. Histological and immunohistochemical results revealed that DF cells formed cementum-like tissues with immunoreactivity to cementum-derived attached protein, bone sialoprotein, type I collagen, and alkaline phosphatase. In addition, HERS cells played a role in the induction and maturation of cementum-like tissues formed by DF cells. In contrast, implants of DF cells in the presence of pulp cells led to the formation of bone-like tissues. Interestingly, in the presence of both HERS and pulp cells, DF cells formed both cementum-like and bone-like tissues. We demonstrated that while HERS cells are able to induce DF cell differentiation into cementoblasts and promote cementum formation, pulp cells could direct DF cell differentiation into osteoblasts and enhance alveolar bone formation. These results suggest that the combined use of DF, HERS, and pulp cells could direct DF cell differentiation into cementoblasts and/or osteoblasts in vivo, thus providing a novel strategy for the successful repair and regeneration of diseased periodontal tissue.  相似文献   

14.
15.
16.
17.
Nam H  Kim J  Park J  Park JC  Kim JW  Seo BM  Lee JC  Lee G 《Molecules and cells》2011,31(4):355-360
Hertwig’s epithelial root sheath/Epithelial rests of Malassez (HERS/ERM) cells are unique epithelial cells in the periodontal ligament. They remain in periodontal tissues through-out the adult life, and it is expected that their functional role is to maintain the homeostasis of the periodontium through reciprocal interactions with other periodontal cells. In this study, we investigated whether HERS/ERM cells have primitive stem cell characteristics: those of embryonic stem cells as well as of epithelial stem cells. Primary HERS/ERM cells had typical epithelial cell morphology and characteristics and they maintained for more than five passages. They expressed epithelial stem cell-related genes: ABCG2, ANp63, p75, EpCAM, and Bmi-1. Moreover, the expression of embryonic stem cell markers such as Oct-4, Nanog, and SSEA-4 were detected. Next, we investigated whether the expression of these stem cell markers was maintained during the sub-culture process. HERS/ERM cells showed different expression levels of these stemness genes at each passage, but their expression was maintained throughout the passages. Taken together, our data suggest that a primary culture of HERS/ERM cells contains a population of primitive stem cells that express epithelial stem cell markers and embryonic stem cell markers. Furthermore, these cell populations were maintained during the sub-culturing process in our culture conditions. Therefore, our findings suggest that there is a strong possibility of accomplishing cementum tissue engineering with HERS/ERM cells.  相似文献   

18.
We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its alpha(6) integrin and alpha-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells.  相似文献   

19.
Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are expressed during osteogenesis and their action is regulated by corresponding BMP inhibitors. Chordin (a well recognized BMP inhibitor) and BMP-2 are expressed during osteogenic differentiation of human mesenchymal stem cells. Chordin inhibition induces human mesenchymal stem cell differentiation and reduces their proliferation by increasing BMP-2 bioavailability. The potential of suppressing BMP inhibitors is emerging as a biological therapeutic target in bone tissue engineering, because it results in an unopposed synergy between the various growth factors that are involved in osteogenesis, within their physiological milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号