首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic relationships of chemoautotrophic endosymbionts in the gutless marine oligochaete Inanidrilus leukodermatus to chemoautotrophic ecto- and endosymbionts from other host phyla and to free-living bacteria were determined by comparative 16S rRNA sequence analysis. Fluorescent in situ hybridization confirmed that the 16S rRNA sequence obtained from these worms originated from the symbionts. The symbiont sequence is unique to I. leukodermatus. In phylogenetic trees inferred by both distance and parsimony methods, the oligochaete symbiont is peripherally associated with one of two clusters of chemoautotrophic symbionts that belong to the gamma subdivision of the Proteobacteria. The endosymbionts of this oligochaete form a monophyletic group with chemoautotrophic ectosymbionts of a marine nematode. The oligochaete and nematode symbionts are very closely related, although their hosts belong to separate, unrelated animal phyla. Thus, cospeciation between the nematode and oligochaete hosts and their symbionts could not have occurred. Instead, the similar geographic locations and habitats of the hosts may have influenced the establishment of these symbioses.  相似文献   

2.
Abstract Three tropical lucinid clams ( Codakia orbiculata, Codakia pectinella and Lucina nassula ) from a shallow coastal environment have been studied regarding to their thioautotrophic bacterial endosymbionts. The 16S rRNA genes (rDNA) from these three endosymbionts were amplified using PCR. Phylogenetic analysis by distance matrix and parsimony methods always placed the newly examined symbionts within the monophyletic group composed of symbionts of the bivalve superfamily Lucinacea. A same single 16S rRNA sequence was found in C. orbiculata and C. pectinella and was identical to that found in C. orbicularis and Linga pensylvanica , two other lucinids living in the same type of environment. These data indicate that a same symbiont species may be associated with different host species. Lucina nassula hosts a symbiont with a distinct 16S rDNA sequence, but very closely related to the former.  相似文献   

3.
The discovery of bacterium-bivalve symbioses capable of utilizing methane as a carbon and energy source indicates that the endosymbionts of hydrothermal vent and cold seep bivalves are not restricted to sulfur-oxidizing chemoautotrophic bacteria but also include methanotrophic bacteria. The phylogenetic origin of methanotrophic endosymbionts and their relationship to known symbiotic and free-living bacteria, however, have remained unexplored. In situ localization and phylogenetic analysis of a symbiont 16S rRNA gene cloned from the gills of a recently described deep-sea mussel species demonstrate that this symbiont represents a new taxon which is closely related to free-living, cultivable Type I methanotrophic bacteria. This symbiont is distinct from known chemoautotrophic symbionts. Thus, despite compelling similarities between the symbioses, chemoautotrophic and methanotrophic symbionts of marine bivalves have independent phylogenetic origins.  相似文献   

4.
The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins.  相似文献   

5.
Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decoupling symbiont and mitochondrial phylogenies. Here, we provide the first evidence against strict maternal cotransmission of symbiont and mitochondrial genomes in vesicomyids. Analysis of Vesicomya sp. mt-II clams from hydrothermal vents on the Juan de Fuca Ridge (northeastern Pacific) revealed a symbiont phylotype (designated symB(VII)) highly divergent from previously described symbionts of the same host lineage. SymB(VII)-hosting clams occurred at low frequency (0.02) relative to individuals hosting the dominant symbiont phylotype. Phylogenetic analysis of 16S rRNA genes from a wide range of symbionts and free-living bacteria clustered symB(VII) within the monophyletic clade of vesicomyid symbionts. Further analysis of 3 symbiont loci (23S, dnaK, and soxA) across 11 vesicomyid taxa unambiguously placed symB(VII) as sister to the symbiont of a distantly related host lineage, Vesicomya sp. from the Mid-Atlantic Ridge (98.9% median nucleotide identity across protein-coding loci). Using likelihood and Bayesian model discrimination methods, we rejected the strict maternal cotransmission hypothesis by showing a significant decoupling of symbiont and host mitochondrial (COI and mt16S genes) phylogenies. Indeed, decoupling occurred even when symB(VII) was excluded from phylogenetic reconstructions, suggesting a history of host switching in this group. Together, the data indicate a history of lateral symbiont transfer in vesicomyids, with symB(VII) being the most conspicuous example. Interpreted alongside previous studies of the vesicomyid symbiosis, these results suggest a mixed mode of symbiont transmission characterized by predominantly vertical transmission punctuated with instances of lateral symbiont acquisition. Lateral acquisition may facilitate the exchange of genetic material (recombination) among divergent symbiont lineages, rendering the evolutionary history of vesicomyid symbiont genomes much more complex than previously thought.  相似文献   

6.
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur‐oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto‐ and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well‐supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto‐ and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.  相似文献   

7.
Bacterial endosymbionts of free-living amoebae   总被引:1,自引:0,他引:1  
The occurrence of bacterial endosymbionts in free-living amoebae has been known for decades, but their obligate intracellular lifestyle hampered their identification. Application of the full cycle rRNA approach, including 16S rRNA gene sequencing and fluorescence in-situ hybridization with 16S rRNA-targeted oligonucleotide probes, assigned the symbionts of Acanthamoeba spp. and Hartmannella sp. to five different evolutionary lineages within the Proteobacteria, the Bacteroidetes, and the Chlamydiae, respectively. Some of these bacterial symbionts are most closely related to bacterial pathogens of humans, and it has been suggested that they should be considered potential emerging pathogens. Complete genome sequence analysis of a chlamydia-related symbiont of Acanthamoeba sp. showed that this endosymbiont uses similar mechanisms for interaction with its eukaryotic host cell as do the well-known bacterial pathogens of humans. Furthermore, phylogenetic analysis suggested that these mechanisms have been evolved by the ancestor of these amoeba symbionts in interplay with ancient unicellular eukaryotes.  相似文献   

8.
The phylogenetic relationship of chemoautotrophic, sulfur-oxidizing, ectosymbiotic bacteria growing on a marine nematode, a Laxus sp. (formerly a Catanema sp.), to known endosymbionts and free-living bacteria was determined. Comparative 16S rRNA sequencing was used to investigate the unculturable nematode epibionts, and rRNA-targeted oligonucleotide hybridization probes were used to identify the ectosymbionts in situ. Both analyses revealed a remarkably specific and stable symbiosis. Unique hybridization of a specific probe to the ectosymbionts indicated that only one species of bacteria was present and growing on the cuticle of the nematode. Distance and parsimony methods used to infer phylogenetic trees both placed the nematode ectosymbionts at the base of a branch containing chemoautotrophic, sulfur-oxidizing endosymbionts of three bivalve families and of the tube worm Riftia pachyptila. The most closely related free-living bacteria were chemoautotrophic sulfur oxidizers belonging to the genus Thiomicrospira. Furthermore, our results suggested that a second, only distantly related group of thioautotrophic endosymbionts has as its deepest branch surface-colonizing bacteria belonging to the genus Thiothrix, some of which are capable of sulfur-oxidizing chemoautotrophic growth.  相似文献   

9.
The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis [C. R. Woese, Microbiol. Rev. 51: 221-271, 1987]). Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.  相似文献   

10.
In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine bivalve Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of thiotrophic mytilid’s symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.  相似文献   

11.
Rickettsia-like maternally inherited bacteria have been shown to be involved in a variety of alterations of arthropod sexuality, such as female-biased sex ratios, parthenogenesis, and sterility of crosses either between infected males and uninfected females or between infected individuals (cytoplasmic incompatibility). We have characterized several of these microorganisms through partial sequences of the small (16S) and large (23S) subunit ribosomal DNA. All the symbionts identified, which include several cytoplasmic incompatibility microorganisms, several endosymbionts of terrestrial isopods, and symbionts of two thelytokous Trichogramma wasp species, belong to a monophyletic group of related symbionts, some of which have previously been detected in several insects exhibiting cytoplasmic incompatibility. Three molecular lineages can be identified on the basis of 16S as well as 23S sequences. Although they are only known as endocellular symbionts, Wolbachia spread by horizontal transfer across host lineages as evidenced by their diversification which occurred long after that of their hosts, and by the non-congruence of the phylogenetic relationships of symbionts and their hosts. Indeed, symbionts of two different lineages have been found in the same host species, whereas closely related endosymbionts are found in distinct insect orders. Isopod endosymbionts form a separate lineage, and they can determine feminization as well as cytoplasmic incompatibility. The ability to determine cytoplasmic incompatibility, found in all lineages, is probably ancestral to this group.  相似文献   

12.
In order to assess the phylogenetic diversity of the endosymbiotic microbial community of the gills of marine shellfish Bathymodiolus azoricus, total DNA was extracted from the gills. The PCR fragments corresponding to the genes encoding 16S rRNA, ribulose-bisphosphate carboxylase (cbbL), and particulate methane monooxygenase (pmoA) were amplified, cloned, and sequenced. For the 16S rDNA genes, only one phylotype was revealed; it belonged to the cluster of Mytilidae thiotrophic symbionts within the Gammaproteobacteria. For the RuBisCO genes, two phylotypes were found, both belonging to Gammaproteobacteria. One of them was closely related to the previously known mytilid symbiont, the other, to a pogonophore symbiont, presumably a methanotrophic bacterium. One phylotype of particulate methane oxygenase genes was also revealed; this finding indicated the presence of a methanotrophic symbiont. Phylogenetic analysis of the pmoA placed this endosymbiont within the Gammaproteobacteria, in a cluster including the methanotrophic bacterial genus Methylobacter and other methanotrophic Bathymodiolus gill symbionts. These results provide evidence for the existence of two types of endosymbionts (thioautotrophic and methanotrophic) in the gills of B. azoricus and demonstrate that, apart from the phylogenetic analysis of 16S rRNA genes, parallel analysis of functional genes is essential.  相似文献   

13.
The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the alpha subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation.  相似文献   

14.
Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: “Candidatus Euplotechlamydia quinta.”  相似文献   

15.
Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95-96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition.  相似文献   

16.
Comparative molecular sequence (16S rRNA) analysis methods were used to identify and characterize the symbionts of Thyasira flexuosa independently of pure culture techniques and to compare these symbionts with the previously reported putative symbiont isolate, Thiobacillus thyasiris TG-2 (A. P. Wood and D. P. Kelly, Arch. Microbiol. 152:160-166, 1989). Polymerase chain reaction amplification using 16S rRNA primers specific for eubacteria was used to amplify a single unique sequence from the gill tissue of T. flexuosa. This sequence is phylogenetically most closely related to the 16S rRNA genes of known symbionts of lucinid clams and is distinct from those determined for strain TG-2 and other known bacteria. Strain TG-2 most closely resembles a free-living, chemolithoautotrophic bacterium known to be associated with the surfaces of thiotrophic bivalve shells, suggesting that this strain is a contaminant and not the authentic intracellular symbiont of T. flexuosa.  相似文献   

17.
Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA‐based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein‐coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species‐specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm‐founding and within‐colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.  相似文献   

18.
Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health.  相似文献   

19.
The surface of many termite gut flagellates is colonized with a dense layer of bacteria, yet little is known about the evolutionary relationships of such ectosymbionts and their hosts. Here we investigated the molecular phylogenies of devescovinid flagellates (Devescovina spp.) and their symbionts from a wide range of dry-wood termites (Kalotermitidae). From species-pure flagellate suspensions isolated with micropipettes, we obtained SSU rRNA gene sequences of symbionts and host. Phylogenetic analysis showed that the Devescovina spp. present in many species of Kalotermitidae form a monophyletic group, which includes also the unique devescovinid flagellate Caduceia versatilis. All members of this group were consistently associated with a distinct lineage of Bacteroidales, whose location on the cell surface was confirmed by fluorescence in situ hybridization. The well-supported congruence of the phylogenies of devescovinids and their ectosymbionts documents a strict cospeciation. In contrast, the endosymbionts of the same flagellates ('Endomicrobia') were clearly polyphyletic and must have been acquired independently by horizontal transfer from other flagellate lineages. Also the Bacteroidales ectosymbionts of Oxymonas flagellates present in several Kalotermitidae belonged to several distantly related lines of descent, underscoring the general perception that the evolutionary history of flagellate-bacteria symbioses in the termite gut is complex.  相似文献   

20.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号