首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The FliF ring is the base for self-assembly of the bacterial flagellum and the FliF/FliG ring complex is the core of the rotor of the flagellar motor. We report the structures of these two ring complexes obtained by electron cryomicroscopy and single-particle image analysis at 22A and 25A resolution, respectively. Direct comparison of these structures with the flagellar basal body made by superimposing the density maps on the central section reveals many interesting features, such as how the mechanically stable connection between the ring and the rod is formed, how directly FliF domains are involved in the near axial density of the basal body forming the proximal end of the central channel for a potential gating mechanism, some indication of flexibility in the connection of FliF and FliG, and structural and functional similarities to the head-to-tail connectors of bacteriophages.  相似文献   

2.
The cap of the bacterial flagellum plays an essential role in the growth of the long helical filament by promoting the efficient self-assembly of flagellin transported to the distal end through the narrow central channel of the flagellum. The structure of the cap-filament complex was analyzed by electron cryomicroscopy and single-particle image analysis to understand how the cap stays attached while allowing the flagellin insertion between the cap and the filament end and also allowing the HAP proteins to pass through. In the images of the complex, the projection pattern of the helical subunit array in the filament portion occupied the major fraction but was variable depending on the azimuthal orientation of the filament; therefore the images showed a strong tendency to be misaligned. Various methods had to be newly developed to correctly align the images by overcoming this misalignment problem. The structure thus obtained clearly demonstrated the pentameric structure of the cap and how the cap operates. The new methods of analysis presented here would be generally applicable to cap structures of various filaments that play biologically important roles in cellular activities.  相似文献   

3.
The structure of a complex between a bivalent diabody and its antigen, influenza neuraminidase, has been determined by electron cryomicroscopy of single particles and image analysis. A three-dimensional reconstruction has been interpreted in terms of high-resolution X-ray models of the component proteins. The complex consists of two neuraminidase tetramers cross-linked by four diabodies with 422 point symmetry. The structure and symmetry of the complex is determined uniquely by packing constraints consistent with the maximum possible number of diabody cross-links. Diabodies may provide a useful approach to the structure determination of small proteins by incorporating the proteins into large symmetric complexes followed by single-particle electron microscopy.  相似文献   

4.
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a well-ordered helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments, each in either of the two distinct conformations, L- and R-type, for supercoiling. We have been studying the three-dimensional structures of the flagellar filaments by electron cryomicroscopy and recently obtained a density map of the R-type filament up to 4 angstroms resolution from an image data set containing only about 41,000 molecular images. The density map showed the features of the alpha-helical backbone and some large side chains, which allowed us to build the complete atomic model as one of the first atomic models of macromolecules obtained solely by electron microscopy image analysis (Yonekura et al., 2003a). We briefly review the structure and the structure analysis, and point out essential techniques that have made this analysis possible.  相似文献   

5.
6.
The three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) has been determined by electron cryomicroscopy and single-particle reconstruction. The receptor was immunoaffinity-purified and formed functional InsP3- and heparin-sensitive channels with a unitary conductance similar to native InsP3Rs. The channel structure exhibits the expected 4-fold symmetry and comprises two morphologically distinct regions: a large pinwheel and a smaller square. The pinwheel region has four radial curved spokes interconnected by a central core. The InsP3-binding core domain has been localized within each spoke of the pinwheel region by fitting its x-ray structure into our reconstruction. A structural mapping of the amino acid sequences to several functional domains is deduced within the structure of the InsP3R1 tetramer.  相似文献   

7.
Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of approximately 4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.  相似文献   

8.
Reovirus is a useful model for addressing the molecular basis of membrane penetration by one of the larger nonenveloped animal viruses. We now report the structure of the reovirus virion at approximately 7.0 A resolution as obtained by electron cryomicroscopy and three-dimensional image reconstruction. Several features of the myristoylated outer capsid protein mu1, not seen in a previous X-ray crystal structure of the mu1-sigma3 heterohexamer, are evident in the virion. These features appear to be important for stabilizing the outer capsid, regulating the conformational changes in mu1 that accompany perforation of target membranes, and contributing directly to membrane penetration during cell entry.  相似文献   

9.
The processive motor myosin V has a relatively high affinity for actin in the presence of ATP and, thus, offers the unique opportunity to visualize some of the weaker, hitherto inaccessible, actin bound states of the ATPase cycle. Here, electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional (3D) reconstructions provide the atomic models of myosin V in both weak and strong actin bound states. One structure shows that ATP binding opens the long cleft dividing the actin binding region of the motor domain, thus destroying the strong binding actomyosin interface while rearranging loop 2 as a tether. Nucleotide analogs showed a second new state in which the lever arm points upward, in a prepower-stroke configuration (lever arm up) bound to actin before phosphate release. Our findings reveal how the structural elements of myosin V work together to allow myosin V to step along actin for multiple ATPase cycles without dissociating.  相似文献   

10.
11.
Structure of the mitochondrial ATP synthase by electron cryomicroscopy   总被引:1,自引:0,他引:1  
We have determined the structure of intact ATP synthase from bovine heart mitochondria by electron cryomicroscopy of single particles. Docking of an atomic model of the F1-c10 subcomplex into a major segment of the map has allowed the 32 A resolution density to be interpreted as the F1-ATPase, a central and a peripheral stalk and an FO membrane region that is composed of two domains. One domain of FO corresponds to the ring of c-subunits, and the other probably contains the a-subunit, the transmembrane portion of the b-subunit and the remaining integral membrane proteins of FO. The peripheral stalk wraps around the molecule and connects the apex of F1 to the second domain of FO. The interaction of the peripheral stalk with F1-c10 implies that it binds to a non-catalytic alpha-beta interface in F1 and its inclination where it is not attached to F1 suggests that it has a flexible region that can serve as a stator during both ATP synthesis and ATP hydrolysis.  相似文献   

12.
Tricorn protease from the archaeon Thermoplasma acidophilum acts "downstream" of the proteasome; in conjunction with its aminopeptidase cofactors it converts peptides generated by the proteasome into free amino acids. The basic functional unit of Tricorn is a homohexamer of the 121-kDa subunit, 20 of which can assemble further to form an icosahedral capsid with a molecular mass of 14.6 MDa. We have used electron cryomicroscopy to determine the structure of the Tricorn capsids to a resolution of 1.3 nm.  相似文献   

13.
Computational advances have significantly contributed to the current role of electron cryomicroscopy (cryoEM) in structural biology. The needs for computational power are constantly growing with the increasing complexity of algorithms and the amount of data needed to push the resolution limits. High performance computing (HPC) is becoming paramount in cryoEM to cope with those computational needs. Since the nineties, different HPC strategies have been proposed for some specific problems in cryoEM and, in fact, some of them are already available in common software packages. Nevertheless, the literature is scattered in the areas of computer science and structural biology. In this communication, the HPC approaches devised for the computation-intensive tasks in cryoEM (single particles and tomography) are retrospectively reviewed and the future trends are discussed. Moreover, the HPC capabilities available in the most common cryoEM packages are surveyed, as an evidence of the importance of HPC in addressing the future challenges.  相似文献   

14.
The location of the ATP-binding site of a P-type ion pump, Ca(2+)-ATPase from rabbit sarcoplasmic reticulum, was examined by cryoelectron microscopy. A nonhydrolyzable analog of ATP, beta, gamma-bidentate chromium (III) complex of ATP (CrATP), was used to stabilize the enzyme in the Ca(2+)-occluded state. Tubular crystals were then induced by vanadate in the presence of EGTA, keeping CrATP bound to the enzyme. The three-dimensional structures of the crystals were determined at 14 A resolution by cryoelectron microscopy and helical image analysis. Statistical comparison of the structures with and without CrATP showed clear and significant differences at the groove proposed previously as the ATP-binding pocket.  相似文献   

15.
Large-scale conformational transitions are involved in the life-cycle of many types of virus. The dsDNA phages, herpesviruses, and adenoviruses must undergo a maturation transition in the course of DNA packaging to convert a scaffolding-containing precursor capsid to the DNA-containing mature virion. This conformational transition converts the procapsid, which is smaller, rounder, and displays a distinctive skewing of the hexameric capsomeres, to the mature virion, which is larger and more angular, with regular hexons. We have used electron cryomicroscopy and image reconstruction to obtain 15 A structures of both bacteriophage P22 procapsids and mature phage. The maturation transition from the procapsid to the phage results in several changes in both the conformations of the individual coat protein subunits and the interactions between neighboring subunits. The most extensive conformational transformation among these is the outward movement of the trimer clusters present at all strict and local 3-fold axes on the procapsid inner surface. As the trimer tips are the sites of scaffolding binding, this helps to explain the role of scaffolding protein in regulating assembly and maturation. We also observe DNA within the capsid packed in a manner consistent with the spool model. These structures allow us to suggest how the binding interactions of scaffolding and DNA with the coat shell may act to control the packaging of the DNA into the expanding procapsids.  相似文献   

16.
Hepatitis B virus (HBV) infects more than 350 million people, of which one million will die every year. The infectious virion is an enveloped capsid containing the viral polymerase and double-stranded DNA genome. The structure of the capsid assembled in vitro from expressed core protein has been studied intensively. However, little is known about the structure and assembly of native capsids present in infected cells, and even less is known about the structure of mature virions. We used electron cryomicroscopy (cryo-EM) and image analysis to examine HBV virions (Dane particles) isolated from patient serum and capsids positive and negative for HBV DNA isolated from the livers of transgenic mice. Both types of capsids assembled as icosahedral particles indistinguishable from previous image reconstructions of capsids. Likewise, the virions contained capsids with either T = 3 or T = 4 icosahedral symmetry. Projections extending from the lipid envelope were attributed to surface glycoproteins. Their packing was unexpectedly nonicosahedral but conformed to an ordered lattice. These structural features distinguish HBV from other enveloped viruses.  相似文献   

17.
G-protein-coupled receptors are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways, which activate cellular processes. Rhodopsin, a well known member of the G-protein-coupled receptor family, is located in the disk membranes of the rod outer segment, where it is responsible for the visualization of dim light. Rhodopsin is the most extensively studied G-protein-coupled receptor, and knowledge about its structure serves as a template for other related receptors. We have gained detailed structural knowledge from the crystal structure (1), which was solved by x-ray crystallography in 2000 using three-dimensional crystals. Here we report a three-dimensional density map of bovine rhodopsin determined by electron cryomicroscopy of two-dimensional crystals with p22(1)2(1) symmetry. The usage of relatively small and disordered crystals made the process of structure determination challenging. Special attention was paid to the extraction of amplitudes and phases, since usable raw data were limited to a maximum tilt of 45 degrees. In the refinement process, an improved unbending procedure was applied. This led to a final resolution of 5.5 A in the membrane plane and approximately 13 A perpendicular to it, making our electron density map the most accurate map of a G-protein-coupled receptor currently available by electron microscopy. Most important is the information we gain about the center of the membrane plane and the orientation of the molecule relative to the bilayer. This information cannot be retrieved from the three-dimensional crystals. In our electron density map, all seven transmembrane helices were identified, and their arrangement is in agreement with the arrangement known from the crystal structure (1). In the retinal binding pocket, a density peak adjacent to helix 3 suggests the position of the beta-ionine ring of the chromophore, and in its vicinity several of the bigger amino acids can be identified.  相似文献   

18.
Tang L  Johnson JE 《Biochemistry》2002,41(39):11517-11524
Recent developments in electron cryomicroscopy and image analysis have made it a powerful tool to investigate the structure, assembly, and dynamics of biological supramolecular assemblies. The subjects of study now include a variety of biological samples that may be homogeneous or heterogeneous, symmetric or nonsymmetric. The combination of this technique with X-ray crystallography plays an increasingly important role in structural biology and provides unique structural information for understanding large, complex biological systems. Here we provide an overview of the technologies and specific applications to virus structure and function.  相似文献   

19.
Semliki Forest virus is among the prototypes for Class II virus fusion and targets the endosomal membrane. Fusion protein E1 and its envelope companion E2 are both anchored in the viral membrane and form an external shell with protruding spikes. In acid environments, mimicking the early endosomal milieu, surface epitopes in the virus rearrange along with exposure of the fusion loop. To visualize this transformation into a fusogenic stage, we determined the structure of the virus at gradually lower pH values. The results show that while the fusion loop is available for external interaction and the shell and stalk domains of the spike begin to deteriorate, the E1 and E2 remain in close contact in the spike head. This unexpected observation points to E1 and E2 cooperation beyond the fusion loop exposure stage and implies a more prominent role for E2 in guiding membrane close encounter than has been earlier anticipated.  相似文献   

20.
The comparison of a pair of electron microscope images recorded at different specimen tilt angles provides a powerful approach for evaluating the quality of images, image-processing procedures, or three-dimensional structures. Here, we analyze tilt-pair images recorded from a range of specimens with different symmetries and molecular masses and show how the analysis can produce valuable information not easily obtained otherwise. We show that the accuracy of orientation determination of individual single particles depends on molecular mass, as expected theoretically since the information in each particle image increases with molecular mass. The angular uncertainty is less than 1° for particles of high molecular mass (∼ 50 MDa), several degrees for particles in the range 1-5 MDa, and tens of degrees for particles below 1 MDa. Orientational uncertainty may be the major contributor to the effective temperature factor (B-factor) describing contrast loss and therefore the maximum resolution of a structure determination. We also made two unexpected observations. Single particles that are known to be flexible showed a wider spread in orientation accuracy, and the orientations of the largest particles examined changed by several degrees during typical low-dose exposures. Smaller particles presumably also reorient during the exposure; hence, specimen movement is a second major factor that limits resolution. Tilt pairs thus enable assessment of orientation accuracy, map quality, specimen motion, and conformational heterogeneity. A convincing tilt-pair parameter plot, where 60% of the particles show a single cluster around the expected tilt axis and tilt angle, provides confidence in a structure determined using electron cryomicroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号