首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coli O157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 10(4) cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 10(2) and 10(3) cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coli O157:H7 in broth cultures.  相似文献   

2.
Presumptive identification of Escherichia coli O157:H7 is possible in an individual, nonmultiplexed PCR if the reaction targets the enterohemorrhagic E. coli (EHEC) eaeA gene. In this report, we describe the development and evaluation of the sensitivity and specificity of a PCR-based 5′ nuclease assay for presumptively detecting E. coli O157:H7 DNA. The specificity of the eaeA-based 5′ nuclease assay system was sufficient to correctly identify all E. coli O157:H7 strains evaluated, mirroring the previously described specificity of the PCR primers. The SZ-primed, eaeA-targeted 5′ nuclease detection assay was capable of rapid, semiautomated, presumptive detection of E. coli O157:H7 when ≥103 CFU/ml was present in modified tryptic soy broth (mTSB) or modified E. coli broth and when ≥104 CFU/ml was present in ground beef-mTSB mixtures. Incorporating an immunomagnetic separation (IMS) step, followed by a secondary enrichment culturing step and DNA recovery with a QIAamp tissue kit (Qiagen), improved the detection threshold to ≥102 CFU/ml. Surprisingly, immediately after IMS, the sensitivity of culturing on sorbitol MacConkey agar containing cefeximine and tellurite (CT-SMAC) was such that identifiable colonies were demonstrated only when ≥104 CFU/ml was present in the sample. Several factors that might be involved in creating these false-negative CT-SMAC culture results are discussed. The SZ-primed, eaeA-targeted 5′ nuclease detection system demonstrated that it can be integrated readily into standard culturing procedures and that the assay can be useful as a rapid, automatable process for the presumptive identification of E. coli O157:H7 in ground beef and potentially in other food and environmental samples.  相似文献   

3.
A quantitative competitive PCR (QC-PCR) assay was developed to detect and quantify Escherichia coli O157:H7 cells. From 103 to 108 CFU of E. coli O157:H7 cells/ml was quantified in broth or skim milk, and cell densities predicted by QC-PCR were highly related to viable cell counts (r2 = 0.99 and 0.93, respectively). QC-PCR has potential for quantitative detection of pathogenic bacteria in foods.  相似文献   

4.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 101 to 105 cells ml−1 in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 108 cells of a non-O157 strain of E. coli ml−1. Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 102 to 105 E. coli O157 cells ml of concentrated water−1. To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water−1, 25 cells 100 ml of 100-fold concentrated water−1, or 1 to 2 viable cells liter−1 with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

5.
The purpose of this study was to develop a detection method for viable E. coli O157:H7 in fresh produce and recreational water. The method was evaluated using eight samples of produce wash and recreational water with or without spiked E. coli O157:H7 at ≤ 102 CFU·ml− 1 and concentrated using dead-end ultrafiltration (DEUF) to produce primary and secondary retentates. Fifty-four matrix replicates of undiluted secondary retentates or dilutions (1:2 or 1:10 in buffer) were evaluated using an IMS/ATP bioluminescence assay (IMS/ATP). Combining primary and secondary DEUF yielded a 2-4 log10 increase in E. coli O157:H7 concentrations in spiked samples and resulted in signal-to-noise ratios 2-219 fold higher than controls, depending on the sample type. DEUF increased the concentration of E. coli O157:H7 to within the detectable limits of IMS/ATP. The combined assay provided detection of viable E. coli O157:H7 in produce and recreational water. Accurate detection of microbial pathogens using DEUF and IMS/ATP could reduce disease outbreaks from contaminated water sources and food products.  相似文献   

6.
Monoclonal antibodies (MCAs) to the E. coli O157: H7 O-antigen characterized by a high level of activity and specificity have been obtained. We investigated their biochemical properties and diagnostic importance. Based on these results, we constructed a latex assay using monoclonal antibodies for the identification of enterohemorrhagic E. coli belonging to the O157 serogroup. This assay was tested on pure cultures of 31 strains of closely related and other microorganisms. The designed assay allows one to detect microbial cells of E. coli O157:H7 at concentrations of 2.5 × 105 cell/ml and higher.  相似文献   

7.
Surface water and groundwater are continuously used as sources of drinking water in many metropolitan areas of the United States. The quality of water from these sources may be reduced due to increases in contaminants such as Escherichia coli from urban and agricultural runoffs. In this study, a multiplex fluorogenic PCR assay was used to quantify E. coli O157:H7 in soil, manure, cow and calf feces, and dairy wastewater in an artificial wetland. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7 in a single reaction. Primer specificity was confirmed with DNA from 33 E. coli O157:H7 and related strains with and without the three genes. A direct correlation was determined between the fluorescence threshold cycle (CT) and the starting quantity of E. coli O157:H7 DNA. A similar correlation was observed between the CT and number of CFU per milliliter used in the PCR assay. A detection limit of 7.9 × 10−5 pg of E. coli O157:H7 DNA ml−1 equivalent to approximately 6.4 × 103 CFU of E. coli O157:H7 ml−1 based on plate counts was determined. Quantification of E. coli O157:H7 in soil, manure, feces, and wastewater was possible when cell numbers were ≥3.5 × 104 CFU g−1. E. coli O157:H7 levels detected in wetland samples decreased by about 2 logs between wetland influents and effluents. The detection limit of the assay in soil was improved to less than 10 CFU g−1 with a 16-h enrichment. These results indicate that the developed PCR assay is suitable for quantitative determination of E. coli O157:H7 in environmental samples and represents a considerable advancement in pathogen quantification in different ecosystems.  相似文献   

8.
Rapid, direct methods are needed to assess active bacterial populations in water and foods. Our objective was to determine the efficiency of bacterial detection by immunomagnetic separation (IMS) and the compatibility of IMS with cyanoditolyl tetrazolium chloride (CTC) incubation to determine respiratory activity, using the pathogen Escherichia coli O157:H7. Counterstaining with a specific fluorescein-conjugated anti-O157 antibody (FAb) following CTC incubation was used to allow confirmation and visualization of bacteria by epifluorescence microscopy. Broth-grown E. coli O157:H7 was used to inoculate fresh ground beef (<17% fat), sterile 0.1% peptone, or water. Inoculated meat was diluted and homogenized in a stomacher and then incubated with paramagnetic beads coated with anti-O157 specific antibody. After IMS, cells with magnetic beads attached were stained with CTC and then an anti-O157 antibody-fluorescein isothiocyanate conjugate and filtered for microscopic enumeration or solid-phase laser cytometry. Enumeration by laser scanning permitted detection of ca. 10 CFU/g of ground beef or <10 CFU/ml of liquid sample. With inoculated meat, the regression results for log-transformed respiring FAb-positive counts of cells recovered on beads versus sorbitol-negative plate counts in the inoculum were as follows: intercept = 1.06, slope = 0.89, and r2 = 0.95 (n = 13). The corresponding results for inoculated peptone were as follows: intercept = 0.67, slope = 0.88, and r2 = 0.98 (n = 24). Recovery of target bacteria on beads by the IMS-CTC-FAb method, compared with recovery by sorbitol MacConkey agar plating, yielded greater numbers (beef, 6.0 times; peptone, 3.0 times; water, 2.4 times). Thus, within 5 to 7 h, the IMS-CTC-FAb method detected greater numbers of E. coli O157 cells than were detected by plating. The results show that the IMS-CTC-FAb technique with enumeration by either fluorescence microscopy or solid-phase laser scanning cytometry gave results that compared favorably with plating following IMS.  相似文献   

9.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

10.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in ≤4 h after enrichment.  相似文献   

11.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.  相似文献   

12.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

13.
Escherichia coli O157:H7 is an important pathogenic Bacterium that threatens human health. A convenient, sensitive and specific method for the E. coli O157:H7 detection is necessary. We developed two pairs of monoclonal antibodies through traditional hybridoma technology, one specifically against E. coli O157 antigen and the other specifically against E. coli H7 antigen. Using these two pairs of antibodies, we developed two rapid test kits to specifically detect E. coli O157 antigen and E. coli H7 antigen, respectively. The detection sensitivity for O157 positive E. coli is 1 × 103 CFU per ml and for H7 positive E. coli is 1 × 104 CFU per ml. Combining these two pairs of antibodies together, we developed a combo test strip that can specifically detect O157: H7, with a detection sensitivity of 1 × 104 CFU per ml, when two detection lines are visible to the naked eye. This is currently the only rapid detection reagent that specifically detects O157: H7 by simultaneously detecting O157 antigen and H7 antigens of E. coli. Our product has advantages of simplicity and precision, and can be a very useful on-site inspection tool for accurate and rapid detection of E. coli O157:H7 infection.  相似文献   

14.
15.

Background

An aptamer based biosensor (aptasensor) was developed and evaluated for rapid colorimetric detection of Escherichia coli (E. coli) O157:H7.

Methodology/Principal Findings

The aptasensor was assembled by modifying the truncated lipopolysaccharides (LPS)-binding aptamer on the surface of nanoscale polydiacetylene (PDA) vesicle using peptide bonding between the carboxyl group of the vesicle and the amine group of the aptamer. Molecular recognition between E. coli O157:H7 and aptamer at the interface of the vesicle lead to blue-red transition of PDA which was readily visible to the naked eyes and could be quantified by colorimetric responses (CR). Confocal laser scanning microscope (CLSM) and transmission electron microscopy (TEM) was used to confirm the specific interactions between the truncated aptamer and E. coli O157:H7. The aptasensor could detect cellular concentrations in a range of 104∼ 108 colony-forming units (CFU)/ml within 2 hours and its specificity was 100% for detection of E. coli O157:H7. Compared with the standard culture method, the correspondent rate was 98.5% for the detection of E. coli O157:H7 on 203 clinical fecal specimens with our aptasensor.

Conclusions

The new aptasensor represents a significant advancement in detection capabilities based on the combination of nucleic acid aptamer with PDA vesicle, and offers a specific and convenient screening method for the detection of pathogenic bacteria. This technic could also be applied in areas from clinical analysis to biological terrorism defense, especially in low-resource settings.  相似文献   

16.
Escherichia coli O157:H7, a major foodborne pathogen, has been associated with numerous cases of foodborne illnesses. Rapid methods have been developed for the screening of this pathogen in foods in order to circumvent timely plate culture techniques. Unfortunately, many rapid methods are presumptive and do not claim to confirm the presence of E. coli O157:H7. The previously developed method, enzyme-linked immunomagnetic chemiluminescence (ELIMCL), has been improved upon to allow for fewer incidences of false positives when used to detect E. coli O157:H7 in the presence of mixed cultures. The key feature of this assay is that it combines the highly selective synergism of both anti-O157 and anti-H7 antibodies in the sandwich immunoassay format. This work presents application of a newly semi-automated version of ELIMCL to the detection of E. coli O157:H7 in pristine buffered saline yielding detection limits of approximately 1 × 105 to 1 × 106 of live cells/mL. ELIMCL was further demonstrated to detect E. coli O157:H7 inoculated into artificially contaminated ground beef at ca. 400 CFU/g after a 5 h enrichment and about 1.5 h assay time for a total detection time of about 6.5 h. Finally, ELIMCL was compared with USFDA's Bacteriological Analytical Manual method for E. coli O157:H7 in a double-blind study. Using McNemar's treatment, the two methods were determined to be statistically similar for the detection of E. coli O157:H7 in ground beef inoculated with mixed cultures of select bacteria.  相似文献   

17.
Conventional culture-based methods for detection of E. coli O157:H7 in foods and water sources are time-consuming, and results can be ambiguous, requiring further confirmation by biochemical testing and PCR. A rapid immunoassay prior to cultivation to identify presumptive positive sample would save considerable time and resources. Immunomagnetic separation (IMS) techniques are routinely used for isolation of E. coli O157:H7 from enriched food and water samples, typically in conjunction with cultural detection followed by biochemical and serological confirmation. In this study, we developed a new method that combines IMS with fluorescence immunoassay, termed immunomagnetic fluorescence assay (IMFA), for the detection of E. coli O157:H7. E. coli O157:H7 cells were first captured by anti-O157 antibody-coated magnetic beads and then recognized by a fluorescent detector antibody, forming an immunosandwich complex. This complex was subsequently dissociated for measurement of fluorescence intensity with Signalyte™-II spectrofluorometer. Experiments were conducted to evaluate both linearity and sensitivity of the assay. Capture efficiencies were greater than 98%, as determined by cultural plating and quantitative real-time PCR, when cell concentrations were <105 cells/mL. Capture efficiency decreased at higher cell concentrations, due to the limitation of bead binding capacity. At lower cell concentrations (10–104 cells/mL), the fluorescence intensity of dissociated Cy5 solution was highly correlated with E. coli 157:H7 cell concentrations. The detection limit was 10 CFU per mL of water. The assay can be completed in less than 3 h since enrichment is not required, as compared to existing techniques that typically require a 24 h incubation for pre-enrichment, followed by confirmatory tests.  相似文献   

18.
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10−8 ml/min and 1.91 × 10−8 ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2 CFU/ml for S. Typhimurium and 4.58 × 10−5 CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.  相似文献   

19.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

20.
Contamination of foods with pathogens such as Escherichia coli O157:H7 and Salmonella is a major concern worldwide and rapid, sensitive, and reliable methods are needed for detection of these organisms. Since these pathogens can contaminate similar foods and other types of samples, a multiplex polymerase chain reduction (PCR) was designed to allow simultaneous detection of both E. coli O157:H7 and Salmonella spp directly from enrichment cultures. Samples of apple cider, beef carcass wash water, ground beef, and bovine feces were inoculated with both E. coli O157:H7 and S. typhimurium at various bacterial levels. Following enrichment culturing for 20–24 h at 37°C in modified EC broth or buffered peptone water both containing novobiocin, the samples were subjected to a DNA extraction technique or to immunomagnetic separation then tested by the multiplex PCR assay. Four pairs of primers were employed in the PCR: primers for amplification of E. coli O157:H7 eaeA, stx 1/2 and plasmid sequences and for amplification of a portion of the Salmonella invA gene. Four fragments of the expected sizes were amplified in a single reaction and visualized following agarose gel electrophoresis in all the samples inoculated with ≤ 1 CFU g−1 or ml−1. Results can be obtained in approximately 30 h. The multiplex PCR is a potentially powerful technique for rapid and sensitive co-detection of both pathogens in foods and other types of samples. Received 28 December 1997/ Accepted in revised form 19 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号