首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of nerve growth factor (NGF) receptors have been described: high affinity (class I) and low affinity (class II). Biological responses to NGF are thought to be mediated by class I receptors, whereas the role of class II receptors is less clear. While some neuronal cells express both receptor types, only class II receptors have been detected on glial cells. Two glial cell lines, peripheral Schwannoma D6P2T and central 33B glioma cells, were employed to investigate the properties of class II receptors in the absence of class I receptors. These cell lines were found to express NGF receptors identified as class II by a low nanomolar dissociation constant, rapid dissociation kinetics at 4 degrees C, and trypsin sensitivity. The receptor was found to bind brain-derived neurotrophic factor with similar affinity as NGF. The responsible binding molecule appeared in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a heterogeneously glycosylated protein of 60-80 kDa with a tendency to aggregate. All receptor bands affinity-labeled with radioiodinated NGF were immunoprecipitated with anti-p75NGFR antibody, but not with anti-p140prototrk antiserum. In these cells, which express p75NGFR as only NGF receptor, a time- and temperature-dependent appearance of a nondisplaceable, trypsin-resistant, acid wash-stable ligand fraction, followed by an increase of trichloroacetic acid-soluble radiolabel in the medium was observed. This sequestration resembled receptor-mediated internalization with subsequent degradation of NGF. Whether this ligand processing indicates a functional role of p75NGFR in glial cells remains to be shown.  相似文献   

2.
Nerve growth factor (NGF) binds to a low affinity cell surface receptor (p75NGFR) which contains four extracellular repeats, rich in cysteine residues and negatively charged. We have made mutations in the receptor cDNA by inserting linkers in specific domains of the receptor. Nearly all the mutations caused a change in the predicted charge, and resulted in either an insertion or deletion in the primary sequence. Stably transfected fibroblasts were assayed for NGF binding by affinity cross-linking with 125I-NGF. Appropriate expression of the mutated receptors was monitored by rosetting with monoclonal antibodies and by metabolic labeling followed by immunoprecipitation. Although the mutant receptors were recognized by monoclonal antibodies, insertions and deletions in the third and fourth cysteine-rich regions of the receptor had a detrimental effect upon NGF binding. Insertions made outside the cysteine-rich region or in the cytoplasmic domain did not inhibit the ability of 125I-NGF to bind to the receptor, as assessed by affinity cross-linking. A chimeric human-rat NGF receptor transfected into fibroblasts indicates that NGF binding and monoclonal antibody recognition sites are separated but contained within the four cysteine repeats.  相似文献   

3.
Both high and low affinity receptors for nerve growth factor (NGF) have been described, but only the former appear to mediate NGF actions and uptake. To specifically characterize the molecular identity of the high affinity site and to compare it with the low affinity site, the water-soluble carbodiimide EDC was used to cross-link 125I-NGF to NGF receptors on: rat PC12 cells, PC12nnr5 cells (PC12 mutants that have only low affinity NGF binding), SH-SY5Y human neuroblastoma cells (which have only high affinity binding sites), and cultured rat sympathetic ganglion cells. A variety of criteria were used to distinguish the two classes of affinity-labeled receptors: competition with unlabeled NGF, dissociation rate, and selective solubilization by 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that cross-linking generated only a single Mr approximately 103,000 125I-NGF affinity-labeled species which represents both the low and high affinity forms of the receptor. The 125I-NGF X receptor complexes formed with both affinity classes of the receptor were quantitatively immunoprecipitated by the monoclonal anti-NGF-receptor antibody 192-IgG and both showed identical shifts in mobility when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These findings indicate that both high and low affinity NGF receptors possess apparently identical NGF-binding moieties. The differences between the kinetic and functional properties of the two receptor types may therefore result from their interactions with other membrane components or with cytoplasmic proteins.  相似文献   

4.
The nerve growth factor (NGF) receptor is a glycosylated transmembrane protein present on the cell surface as both high and low affinity forms, but biological responsiveness requires interactions of NGF with the high affinity site. We have tested the effects of mutations in the intracellular domain of the receptor upon its cell surface expression and equilibrium binding of 125I-NGF. Although mutant receptors lacking the entire cytoplasmic domain are processed and expressed at the cell surface and are capable of binding to NGF, the absence of cytoplasmic sequences leads to a loss of high affinity binding and to a lack of an appropriate cross-linking pattern as assessed by N-hydroxysuccinimidyl 4-azidobenzoate photoaffinity cross-linking. These results, taken together with the highly conserved nature of these cytoplasmic sequences, implies that the interaction of the receptor with an accessory molecule is necessary to form the high affinity receptor.  相似文献   

5.
神经生长因子是神经营养因子家族成员之一,对不同时期神经元的存活、分化、生长及损伤后的修复和再生都有着十分重要的作用。不仅在神经系统中,随着人类的其他正常和肿瘤组织中同样也检测得到了NGF,神经生长因子在各方面的应用也得到了重视并均已得到了证实。NGF功能的发挥离不开与其受体的结合,根据NGF表面糖蛋白与凝集素结合能力的不同,其受体可被分为高亲和力受体酪氨酸激酶A和低亲和力受体p75。Trk A与NGF结合后所介导的信号通路主要有:1MAPK通路;2PLC-γ通路;3PI3K/PKB通路。而p75与NGF结合介导的信号传导通路主要包括:1NF-κB通路;2JNK-p53-Bax凋亡通路;3神经酰胺通路。Trk A一般介导的是正性信号,如促进神经细胞生长、维持神经细胞的存活等;而p75既可促进神经细胞存活,也可诱导神经细胞凋亡,但以后者为主。当Trk A与p75同时表达时,Trk A可抑制p75诱导细胞凋亡,使受损神经细胞大量增殖,所以其生物学总效应是促进神经细胞的生长和存活。  相似文献   

6.
Neurotrophins are target-derived soluble polypeptides required for neuronal survival. Binding of neurotrophins to Trk receptor tyrosine kinases initiate signaling cascades that promote cell survival and differentiation. All family members bind to another receptor (p75NTR), which belongs to the tumor necrosis factor superfamily. Hence, nerve growth factor (NGF) and related trophic factors are unique in that two separate receptor types are utilized. Although the biological function of p75NTR has been elusive, it has been suggested to mediate apoptosis of developing neurons in the absence of Trk receptors. This presents a tantalizing paradigm, in which life-death decisions of cells are dependent upon the expression and action of two different receptors with distinctive signaling mechanisms. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced NGF responsiveness leading to a survival signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. Here we discuss the unique features and implications of this unusual signal transduction system.  相似文献   

7.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

8.
Polyclonal antibodies were prepared against recombinant basic fibroblast growth factor (bFGF) that reacted only with bFGF but not acidic FGF. These antibodies were able to inhibit various biological activities of bFGF such as the ability of bFGF to stimulate DNA synthesis in 3T3 cells, proliferation and migration of bovine capillary endothelial cells (BCEC), and neurite extension in pheochromocytoma (PC12) cells. The anti-bFGF antibodies also inhibited the mitogenic activity of subendothelial cell extracellular matrix for BCEC, demonstrating that the growth factor component in extracellular matrix required for supporting BCEC proliferation was bFGF. Anti-bFGF antibodies inhibited the cross-linking of bFGF to its high affinity receptor on BCEC cells. However, these antibodies did not inhibit the binding of bFGF to heparin-Sepharose or to the low affinity receptors of BCEC which have been demonstrated to be heparin-like molecules. These results suggest that bFGF has distinct domains for binding to high affinity cellular receptors and for binding to heparin.  相似文献   

9.
This article reports the results of a systematic investigation of the different types of antibodies produced in the course of a long-term immunization of rats with mouse nerve growth factor (NGF). We have characterized three types of monoclonal antibodies, namely: (1) antibodies that bind to NGF and inhibit its binding to target cells and its biological activity in culture (type A); (2) antibodies that bind to and precipitate NGF but do not inhibit its binding to target cells or its biological activity (type B); (3) antibodies that fail to recognize NGF itself, but inhibit nonetheless its binding to target cells (type C). These antibodies bind to an antigen present on NGF target cells and not on rat fibroblasts lacking NGF receptor. They appear thus to be antiidiotypic antibodies directed against the NGF receptor, developed as a consequence of the long-term immunization with NGF.  相似文献   

10.
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.  相似文献   

11.
Ligand-induced receptor oligomerization is an established mechanism for receptor-tyrosine kinase activation. However, numerous receptor-tyrosine kinases are expressed in multicomponent complexes with other receptors that may signal independently or alter the binding characteristics of the receptor-tyrosine kinase. Nerve growth factor (NGF) interacts with two structurally unrelated receptors, the Trk A receptor-tyrosine kinase and p75, a tumor necrosis factor receptor family member. Each receptor binds independently to NGF with predominantly low affinity (K(d) = 10(-9) m), but they produce high affinity binding sites (K(d) = 10(-11) m) upon receptor co-expression. Here we provide evidence that the number of high affinity sites is regulated by the ratio of the two receptors and by specific domains of Trk A and p75. Co-expression of Trk A containing mutant transmembrane or cytoplasmic domains with p75 yielded reduced numbers of high affinity binding sites. Similarly, co-expression of mutant p75 containing altered transmembrane and cytoplasmic domains with Trk A also resulted in predominantly low affinity binding sites. Surprisingly, extracellular domain mutations of p75 that abolished NGF binding still generated high affinity binding with Trk A. These results indicate that the transmembrane and cytoplasmic domains of Trk A and p75 are responsible for high affinity site formation and suggest that p75 alters the conformation of Trk A to generate high affinity NGF binding.  相似文献   

12.
The trk proto-oncogene encodes a receptor for nerve growth factor.   总被引:127,自引:0,他引:127  
R Klein  S Q Jing  V Nanduri  E O'Rourke  M Barbacid 《Cell》1991,65(1):189-197
Two classes of receptors with distinct affinities for nerve growth factor (NGF) have been identified. The low affinity receptor (Kd approximately 10(-9) to 10(-8) M) is a cysteine-rich glycoprotein encoded by the previously characterized LNGFR gene. The structural nature of the high affinity receptor (Kd approximately 10(-11) to 10(-10) M) has yet to be established. In this study we show that the product of the human trk proto-oncogene (gp140trk) binds NGF with high affinity. Moreover, NGF could be chemically cross-linked to the endogenous gp140trk present in rat PC12 pheochromocytoma cells as well as to gp140trk ectopically expressed in mouse fibroblasts and in insect Sf9 cells. High affinity binding of NGF to gp140trk can occur in the absence of low affinity LNGFR receptors, at least in nonneural cells. Addition of NGF to PC12 cells elicits rapid phosphorylation of gp140trk on tyrosine residues and stimulates its tyrosine kinase activity. These results indicate that gp140trk is a functional NGF receptor that mediates at least some of the signal transduction processes initiated by this neurotrophic factor.  相似文献   

13.
Nerve growth factor (NGF) interacts with a cell surface receptor on responsive neurons to initiate a series of cellular events leading to neuronal survival and/or differentiation. The first step in this process is the binding of NGF to a low affinity and/or a high affinity receptor. In the present report, we have studied the conformation and stability of recombinant receptor extracellular domain (RED) from the human low affinity receptor and the structural basis of its interaction with NGF. Circular dichroism (CD) studies indicate that the RED is primarily random coil in nature with little regular secondary structure. Thermal stability studies have shown that this irregular conformation is a specific structure that can undergo a reversible two-state thermal denaturation with a concomitant fluorescent and CD change. During heating at 100 degrees C for 15 min, the structure of RED is sufficiently unfolded for a reducing agent, dithiothreitol, to inactivate the receptor toward NGF binding and cross-linking. The complex formation between the RED and NGF has been examined by differential CD measurements, and we have shown that a small, reproducible change in conformation occurs in RED or NGF upon interaction. These results are interpreted in terms of the initiation of NGF cell surface binding and possible modes of signal transduction.  相似文献   

14.
A nerve growth factor (NGF) receptor interactive monoclonal antibody (192-IgG) which enhances beta-NGF binding to PC12 cells has been produced. The hybridoma clone was obtained by fusing Sp2/0- Ag14 myeloma cells with splenocytes from Balb/C mice which had been immunized with n-octyl glucoside solubilized proteins from isolated PC12 cell plasma membranes. The antibody is an IgG, which does not bind beta-NGF. It binds to the same number of sites on PC12 cells at low temperature as does beta-NGF. The 192-IgG increases the apparent affinity of beta-NGF binding to fast receptors on PC12 cells at low temperature by a factor of 2.5- to 4-fold and enhances the photoactivatable cross-linking of beta-NGF to the same receptor while decreasing the cross-linking of beta-NGF to the slow NGF receptor. At 37 degrees C 192-IgG partially inhibits the regeneration of neurites from primed PC12 cells. The 192-IgG also reduces the rate of appearance of binding to slow NGF receptors and increases the proportion of beta-NGF bound to fast receptors at 37 degrees C. These results implicate the slow receptor as the mediator of the biological response. This antibody provides a tool for examining steps in the mechanism of action of beta-NGF after binding to the receptor.  相似文献   

15.
We found that a monokine induced by interferon-gamma (Mig, CXCL9), which belongs to the CXC chemokine subfamily, acts as a neurotrophic factor on PC12 cells and rat primary sympathetic neurons. PC12 cells were shown to express a single class of high affinity binding sites for Mig (670 receptors/cell, Kd = 2.9 nm). Mig induced neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of extracellular signal-regulated kinase signaling pathways between Mig and nerve growth factor (NGF) revealed that these pathways are crucial for Mig action as well as NGF. K252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks) did not inhibit the action of Mig, suggesting that Mig action occurs via a different receptor from that of NGF. Furthermore, Mig as well as NGF promoted PC12 survival under serum-free conditions and activated Akt/protein kinase B downstream from phosphatidylinositol 3-kinase (PI3K). Because the PI3K inhibitor LY294002 prevented the Mig- and NGF-induced survival effect, this effect is probably mediated by the PI3K signaling pathway. Mig also promoted survival of rat primary sympathetic neurons that die when deprived of NGF. These results suggest that chemokines, including Mig (CXCL9) have neurotrophic effects on the nervous system.  相似文献   

16.
F Walker  E Nice  L Fabri  F J Moy  J F Liu  R Wu  H A Scheraga  A W Burgess 《Biochemistry》1990,29(47):10635-10640
In most cell types two classes of epidermal growth factor (EGF) receptors can be found: a major class that binds EGF with relatively low affinity and a minor class that binds with very high affinity. Structure-function studies have shown that mutations at amino acid 47 in the EGF molecule severely reduce its affinity for the EGF receptor but do not cause preferential binding to one or the other subclass of receptors. Using three EGF derivatives with a mutation at amino acid 47 (Ser-47, Leu-37-Tyr-47, and Val-47), we have investigated the relative contribution of the two receptor subclasses to the EGF-dependent mitogenic response. We show that mitogenicity correlates exclusively with occupancy of the high-affinity receptor and that full occupancy of this subclass is required for maximal stimulation. In addition we demonstrate that for the EGF-Val-47 analogue this requirement can be abrogated and half-maximal biological activity reached with a high-affinity receptor occupancy of only 8%. While the rate of internalization did not significantly differ between EGF-Val-47 and native mEGF, the analogue was much more resistant to degradation by cellular proteases and, after binding and receptor-mediated internalization, was released into the medium predominantly in an intact form. We propose that the increased mitogenicity of EGF-Val-47 is due to its prolonged half-life, resulting in continued occupancy of the high-affinity EGF receptor.  相似文献   

17.
The mobile receptor hypothesis has been proposed to describe the process by which hormone receptor binding initiates a biological response; it states that receptors, which can diffuse independently in the plane of the membrane, reversibly associate with effectors to regulate their activity. The affinity for effector is greater when the receptor is occupied by hormone. A mathematical expression of the mobile receptor hypothesis is used to show that: (1) The predicted kinetics of hormone receptor binding may be indistinguishable from "negative cooperativity." (2) Receptor occupancy and biological response may be coupled in a non-linear fashion. By choosing specific parameters, most of the existing data on insulin binding and biological responses can be explained in terms of the mobile receptor hypothesis. Thus, the following are easily explained: (1) A single homogeneous receptor may appear kinetically to be composed of two classes (of high and low affinity) of receptors. (2) Occupancy of the apparent class of high affinity receptors is related linearly to the biological response. (3) The same receptor in different tissues may appear to have different affinity. (4) The binding of different biologically active insulin analogues may exhibit different degrees of "cooperativity." These considerations may also be pertinent to interpretations of other hormone-receptor systems and of various ligand-macromolecule interactions.  相似文献   

18.
The functional role of the predicted first alpha-helix of human granulocyte-macrophage colony-stimulating factor (GM-CSF) was analysed by site-directed mutagenesis and multiple biological and receptor binding assays. Initial deletion mutagenesis pointed to residues 20 and 21 being critical. Substitution mutagenesis showed that by altering Gln20 to Ala full GM-CSF activity was retained but that by altering Glu21 for Ala GM-CSF activity and high affinity receptor binding were decreased. Substitution of different amino acids for Glu21 showed that there was a hierarchy in the ability to stimulate the various biological activities of GM-CSF with the order of potency being Asp21 greater than Ser21 greater than Ala21 greater than Gln21 greater than Lys21 = Arg21. To distinguish whether position 21 was important for GM-CSF binding to high or low affinity receptors, GM-CSF (Arg21) was used as a competitor for [125I]GM-CSF binding to monocytes that express both types of receptor. GM-CSF (Arg21) exhibited a greatly reduced capacity to compete for binding to high affinity receptors, however, it competed fully for [125I]GM-CSF binding to low affinity receptors. Furthermore, GM-CSF (Arg21) was equipotent with wild-type GM-CSF in binding to the cloned low affinity alpha-chain of the GM-CSF receptor. These results show that (i) this position is critical for high affinity but not for low affinity GM-CSF receptor binding thus defining two functional parts of the GM-CSF molecule; (ii) position 21 of GM-CSF is critical for multiple functions of GM-CSF; and (iii) stimulation of proliferation and mature cell function by GM-CSF are mediated through high affinity receptors.  相似文献   

19.
The mobile receptor hypothesis has been proposed to describe the process by which hormone receptor binding initiates a biological response; it states that receptors, which can diffuse independently in the plane of the membrane, reversibly associate with effectors to regulate their activity. The affinity for effector is greater when the receptor is occupied by hormone.A mathematical expression of the mobile receptor hypothesis is used to show that: (1) The predicted kinetics of hormone receptor binding may be indistinguishable from “negative cooperativity”. (2) Receptor occupancy and biological response may be coupled in a non-linear fashion.By choosing specific parameters, most of the existing data on insulin binding and biological responses can be explained in terms of the mobile receptor hypothesis. Thus, the following are easily explained: (1) A single homogeneous receptor may appear kinetically to be composed of two classes (of high and low affinity) of receptors. (2) Occupancy of the apparent class of high affinity receptors is related linearly to the biological response. (3) The same receptor in different tissues may appear to have different affinity. (4) The binding of different biologically active insulin analogues may exhibit different degrees of “cooperatively.” These considerations may also be pertinent to intepretations of other hormone-receptor systems and of various ligand-macromolecule interactions.  相似文献   

20.
The equilibrium and kinetic properties of leukemia inhibitory factor (LIF) binding to a range of cell types have been compared. When binding was examined at 4 degrees C, the majority of cells were found to express a single class of high affinity LIF receptor (KD = 20-100 pM; ka = 2-8 x 10(8) min-1 M-1; kd = 0.0004-0.0011 min-1). In contrast, certain activated macrophage populations expressed apparently independent classes of high and low affinity LIF receptor. The low affinity receptors differed from the high affinity receptors in terms of the dissociation rate of the receptor-ligand complex (KD = 1-2 nM; ka = 3-7 x 10(8) min-1 M-1; kd = 0.30-0.67 min-1). At 37 degrees C, the interaction of LIF with its high affinity receptor was more complicated, since occupied LIF receptors were internalized more rapidly than unoccupied receptors, internalized LIF was hydrolyzed and released from the cell, and new receptors were synthesized and expressed on the cell surface. Interestingly, when membranes were prepared from cells that expressed only high affinity receptors, both high and low affinity receptors were detected, while after detergent solubilization of membranes only low affinity receptors were apparent. These results are discussed in terms of a structural model for the LIF receptor in which interaction of a low affinity binding subunit and a second nonbinding subunit is required for the generation of the high affinity receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号