首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructansucrases (FSs) catalyze a transfructosylation reaction with sucrose as substrate to produce fructo-oligosaccharides and fructan polymers that contain either β-2,1 glycosidic linkages (inulin) or β-2,6 linkages (levan). Levan-synthesizing FSs (levansucrases) have been most extensively investigated, while detailed information on inulosucrases is limited. Importantly, the molecular basis of the different product specificities of levansucrases and inulosucrases is poorly understood.We have elucidated the three-dimensional structure of a truncated active bacterial GH68 inulosucrase, InuJ of Lactobacillus johnsonii NCC533 (residues 145-708), in its apo form, with a bound substrate (sucrose), and with a transfructosylation product. The sucrose binding pocket and the sucrose binding mode are virtually identical with those of GH68 levansucrases, confirming that both enzyme types use the same fully conserved structural framework for the binding and cleavage of the donor substrate sucrose in the active site. The binding mode of the first transfructosylation product 1-kestose (Fru-β(2-1)-Fru-α(2-1)-Glc, where Fru = fructose and Glc = glucose) in subsites − 1 to + 2 shows for the first time how inulin-type fructo-oligosaccharide bind in GH68 FS and how an inulin-type linkage can be formed. Surprisingly, observed interactions with the sugar in subsites + 1 and + 2 are provided by residues that are also present in levansucrases. The binding mode of 1-kestose and the presence of a more distant sucrose binding site suggest that residues beyond the + 2 subsite, in particular residues from the nonconserved 1B-1C loop, determine product linkage type specificity in GH68 FSs.  相似文献   

2.
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2′ positions, which may be attributed to the larger space available for substrate binding at the S2 and S2′ sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.  相似文献   

3.
We investigate the sequence and structural properties of RNA-protein interaction sites in 211 RNA-protein chain pairs, the largest set of RNA-protein complexes analyzed to date. Statistical analysis confirms and extends earlier analyses made on smaller data sets. There are 24.6% of hydrogen bonds between RNA and protein that are nucleobase specific, indicating the importance of both nucleobase-specific and -nonspecific interactions. While there is no significant difference between RNA base frequencies in protein-binding and non-binding regions, distinct preferences for RNA bases, RNA structural states, protein residues, and protein secondary structure emerge when nucleobase-specific and -nonspecific interactions are considered separately. Guanine nucleobase and unpaired RNA structural states are significantly preferred in nucleobase-specific interactions; however, nonspecific interactions disfavor guanine, while still favoring unpaired RNA structural states. The opposite preferences of nucleobase-specific and -nonspecific interactions for guanine may explain discrepancies between earlier studies with regard to base preferences in RNA-protein interaction regions. Preferences for amino acid residues differ significantly between nucleobase-specific and -nonspecific interactions, with nonspecific interactions showing the expected bias towards positively charged residues. Irregular protein structures are strongly favored in interactions with the protein backbone, whereas there is little preference for specific protein secondary structure in either nucleobase-specific interaction or -nonspecific interaction. Overall, this study shows strong preferences for both RNA bases and RNA structural states in protein-RNA interactions, indicating their mutual importance in protein recognition.  相似文献   

4.
5.
Protein design aims at designing new protein molecules of desired structure and functionality. One of the major obstacles to large-scale protein design are the extensive time and manpower requirements for experimental validation of designed sequences. Recent advances in protein structure prediction have provided potentials for an automated assessment of the designed sequences via folding simulations. We present a new protocol for protein design and validation. The sequence space is initially searched by Monte Carlo sampling guided by a public atomic potential, with candidate sequences selected by the clustering of sequence decoys. The designed sequences are then assessed by I-TASSER folding simulations, which generate full-length atomic structural models by the iterative assembly of threading fragments. The protocol is tested on 52 nonhomologous single-domain proteins, with an average sequence identity of 24% between the designed sequences and the native sequences. Despite this low sequence identity, three-dimensional models predicted for the first designed sequence have an RMSD of < 2 Å to the target structure in 62% of cases. This percentage increases to 77% if we consider the three-dimensional models from the top 10 designed sequences. Such a striking consistency between the target structure and the structural prediction from nonhomologous sequences, despite the fact that the design and folding algorithms adopt completely different force fields, indicates that the design algorithm captures the features essential to the global fold of the target. On average, the designed sequences have a free energy that is 0.39 kcal/(mol residue) lower than in the native sequences, potentially affording a greater stability to synthesized target folds.  相似文献   

6.
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.  相似文献   

7.
The crystal structure of the C-terminal domain of a hook-capping protein FlgD from the plant pathogen Xanthomonas campestris (Xc) has been determined to a resolution of ca 2.5 Å using X-ray crystallography. The monomer of whole FlgD comprises 221 amino acids with a molecular mass of 22.7 kDa, but the flexible N-terminus is cleaved for up to 75 residues during crystallization. The final structure of the C-terminal domain reveals a novel hybrid comprising a tudor-like domain interdigitated with a fibronectin type III domain. The C-terminal domain of XcFlgD forms three types of dimers in the crystal. In agreement with this, analytical ultracentrifugation and gel filtration experiments reveal that they form a stable dimer in solution. From these results, we propose that the Xc flagellar hook cap protein FlgD comprises two individual domains, a flexible N-terminal domain that cannot be detected in the current study and a stable C-terminal domain that forms a stable dimer.  相似文献   

8.
9.
Proteins belonging to the glycoside hydrolase family 63 (GH63) are found in bacteria, archaea, and eukaryotes. Eukaryotic GH63 proteins are processing α-glucosidase I enzymes that hydrolyze an oligosaccharide precursor of eukaryotic N-linked glycoproteins. In contrast, the functions of the bacterial and archaeal GH63 proteins are unclear. Here we determined the crystal structure of a bacterial GH63 enzyme, Escherichia coli K12 YgjK, at 1.78 Å resolution and investigated some properties of the enzyme. YgjK consists of the N-domain and the A-domain, joined by a linker region. The N-domain is composed of 18 antiparallel β-strands and is classified as a super-β-sandwich. The A-domain contains 16 α-helices, 12 of which form an (α/α)6-barrel; the remaining 4 α-helices are found in an extra structural unit that we designated as the A′-region. YgjK, a member of the glycoside hydrolase clan GH-G, shares structural similarity with glucoamylase (GH15) and chitobiose phosphorylase (GH65), both of which belong to clan GH-L. In crystal structures of YgjK in complex with glucose, mannose, and galactose, all of the glucose, mannose, and galactose units were located in the catalytic cleft. YgjK showed the highest activity for the α-1,3-glucosidic linkage of nigerose, but also hydrolyzed trehalose, kojibiose, and maltooligosaccharides from maltose to maltoheptaose, although the activities were low. These findings suggest that YgjK is a glucosidase with relaxed specificity for sugars.  相似文献   

10.
Patil A  Nakamura H 《FEBS letters》2006,580(8):2041-2045
We investigate the structural properties of hubs that enable them to interact with several partners in protein-protein interaction networks. We find that hubs have more observed and predicted disordered residues with fewer loops/coils, and more charged residues on the surface as compared to non-hubs. Smaller hubs have fewer disordered residues and more charged residues on the surface than larger hubs. We conclude that the global flexibility provided by disordered domains, and high surface charge are complementary factors that play a significant role in the binding ability of hubs.  相似文献   

11.
Cobalamin-independent methionine synthase (MetE) catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to l-homocysteine to form methionine. Previous studies have shown that the MetE active site coordinates a zinc atom, which is thought to act as a Lewis acid and plays a role in the activation of thiol. Extended X-ray absorption fine structure studies and mutagenesis experiments identified the zinc-binding site in MetE from Escherichia coli. Further structural investigations of MetE from Thermotoga maritima lead to the proposition of two models: “induced fit” and “dynamic equilibrium”, to account for the catalytic mechanisms of MetE. Here, we present crystal structures of oxidized and zinc-replete MetE from Streptococcus mutans at the physiological pH. The structures reveal that zinc is mobile in the active center and has the possibility to invert even in the absence of homocysteine. These structures provide evidence for the dynamic equilibrium model.  相似文献   

12.
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.  相似文献   

13.
Endorepellin, the C-terminal region of perlecan, inhibits angiogenesis by disrupting actin cytoskeleton and focal adhesions. The C-terminal laminin-like globular domain (LG3) of endorepellin directs most of this antiangiogenic activity. To investigate the angiostatic mechanism and to identify structural determinants, we have solved crystal structures of the LG3 domain in both apo- and calcium-bound forms at resolutions of 1.5 Å and 2.8 Å, respectively. The conserved core has the jellyroll fold characteristic of LG domains. The calcium-induced structural changes seem very restricted, and the calcium binding site appears to be preformed, suggesting that the bound calcium ion, rather than structural rearrangements, contributes to antiangiogenesis. We have identified H4268 on the EF loop as a key residue for the biochemical function of LG3, since its mutation abolishes antiangiogenic activity, and mutant LG3 can no longer form a direct interaction with integrin. Taken together, we propose that these two distinct structural elements contribute to the angiostatic effect of endorepellin.  相似文献   

14.
Bacillus subtilis can synthesize the compatible solute glycine betaine as an osmoprotectant from an exogenous supply of the precursor choline. Import of choline is mediated by two osmotically inducible ABC transport systems: OpuB and OpuC. OpuC catalyzes the import of various osmoprotectants, whereas OpuB is highly specific for choline. OpuBC is the substrate-binding protein of the OpuB transporter, and we have analyzed the affinity of the OpuBC/choline complex by intrinsic tryptophan fluorescence and determined a Kd value of about 30 μM. The X-ray crystal structure of the OpuBC/choline complex was solved at a resolution of 1.6 Å and revealed a fold typical of class II substrate-binding proteins. The positively charged trimethylammonium head group of choline is wedged into an aromatic cage formed by four tyrosine residues and is bound via cation-pi interactions. The hydroxyl group of choline protrudes out of this aromatic cage and makes a single interaction with residue Gln19. The substitution of this residue by Ala decreases choline binding affinity by approximately 15-fold. A water network stabilizes choline within its substrate-binding site and promotes indirect interactions between the two lobes of the OpuBC protein. Disruption of this intricate water network by site-directed mutagenesis of selected residues in OpuBC either strongly reduces choline binding affinity (between 18-fold and 25-fold) or abrogates ligand binding. The crystal structure of the OpuBC/choline complex provides a rational for the observed choline specificity of the OpuB ABC importer in vivo and explains its inability to catalyze the import of glycine betaine into osmotically stressed B. subtilis cells.  相似文献   

15.
Kataoka Y  Takada K  Oyama H  Tsunemi M  James MN  Oda K 《FEBS letters》2005,579(14):2991-2994
Scytalidoglutamic peptidase (SGP) is the first-discovered member of the eqolisin family of peptidases with a unique structure and a presumed novel catalytic dyad (E136 and Q53) [Fujinaga et al., PNAS 101 (2004) 3364-3369]. Mutants of SGP, E136A, Q53A, and Q53E lost both the autoprocessing and enzymatic activities of the wild-type enzyme. Coupled with the results from the structural analysis of SGP, Glu136 and Gln53 were identified as the catalytic residues. The substrate specificity of SGP is unique, particularly, in the preference at the P3 (basic amino acid), P1' (small a.a.), and P3' (basic a.a.) positions. Superior substrates and inhibitors have been synthesized for kinetic studies based on the results reported here. kcat, Km, and kcat/Km of SGP for D-Dap(MeNHBz)-GFKFF*ALRK(Dnp)-D-R-D-R were 34.8 s-1, 0.065 microM, and 535 microM-1 s-1, respectively. Ki of Ac-FKF-(3S,4S)-phenylstatinyl-LR-NH2 for SGP was 1.2x10(-10) M. Taken together, we can conclude that SGP has not only structural and catalytic novelties but also a unique subsite structure.  相似文献   

16.
17.
Crystal Structure of a Full-Length Autotransporter   总被引:1,自引:0,他引:1  
The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the β-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the β-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 Å. EstA has a relatively narrow, 12-stranded β-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the β-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by α-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.  相似文献   

18.
19.
20.
Protein-protein interactions are critical to most biological processes, and locating protein-protein interfaces on protein structures is an important task in molecular biology. We developed a new experimental strategy called the ‘absence of interference’ approach to determine surface residues involved in protein-protein interaction of established yeast two-hybrid pairs of interacting proteins. One of the proteins is subjected to high-level randomization by error-prone PCR. The resulting library is selected by yeast two-hybrid system for interacting clones that are isolated and sequenced. The interaction region can be identified by an absence or depletion of mutations. For data analysis and presentation, we developed a Web interface that analyzes the mutational spectrum and displays the mutational frequency on the surface of the structure (or a structural model) of the randomized protein†. Additionally, this interface might be of use for the display of mutational distributions determined by other types of random mutagenesis experiments. We applied the approach to map the interface of the catalytic domain of the DNA methyltransferase Dnmt3a with its regulatory factor Dnmt3L. Dnmt3a was randomized with high mutational load. A total of 76 interacting clones were isolated and sequenced, and 648 mutations were identified. The mutational pattern allowed to identify a unique interaction region on the surface of Dnmt3a, which comprises about 500-600 Å2. The results were confirmed by site-directed mutagenesis and structural analysis. The absence-of-interference approach will allow high-throughput mapping of protein interaction sites suitable for functional studies and protein docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号