首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of Chinese hamster cells to near-u.v. light, following the uniform incorporation of 5-bromodeoxyuridine (BrdUrd) into their DNA, resulted in cell killing that was close to exponential. An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3-ABA), enhanced the cytotoxic effect of this treatment when present for 2 h at 20 mM after light exposure. The dose modifying factor was 1.4. Under conditions that resulted in a sigmoidal survival curve (a 30 min BrdUrd pulse in S phase, followed 90 min later by light exposure) the effect of 3-ABA was to remove the shoulder of the survival curve with very little change in its final slope. Using various inhibitors of ADP-ribosyl transferase (ADPRT) the enhanced cell killing was found to correlate with the inhibitors' relative potency. Cellular NAD+, the substrate for poly(ADP-ribose) synthesis, was rapidly depleted after exposure. This depletion was largely prevented by 3-ABA; the activity of ADPRT increased with the fluence of near-u.v. light; and the concentration of cellular NAD+ decreased with exposure. ADPRT activity was maximal immediately after exposure to near u.v. light and then decayed to pre-exposure levels within 30 min (37 degrees C). The enhanced cytotoxicity of BrdUrd + near-u.v. light, when followed by 3-ABA treatment, disappeared at a rate similar to that of the decay in ADPRT activity. We conclude from these results that poly(ADP-ribose) synthesis is important for the recovery from BrdUrd photolysis damage in DNA. Because this damage and its repair are relatively specific (e.g. compared to ionizing radiation) and relatively easy to manipulate, it could serve as a model system for the study of the role of poly(ADP-ribose) in the repair of DNA damage.  相似文献   

2.
The use of a DNA alkylating agent, which induces poly(ADP-ribose) formation, has been employed to study the incorporation of [adenine 14C]NAD into pea root meristem nuclei, which is a prerequisite for poly(ADP-ribose) synthesis. The incorporation of [adenine 14C]NAD is significantly reduced when the poly(ADP-ribose)polymerase inhibitors, 7-methylxanthine and 3-methoxybenzamide are present and this incorporation is augmented when the DNA alkylating agent methyl methanesulfonate is added. Such information supports the hypothesis that poly(ADP-ribose) may be involved in the cell cycle regulation of pea root meristem nuclei.  相似文献   

3.
The differential metabolic effects of three nicotinamide analogs, 6-aminonicotinamide, 3-aminobenzamide, and 5-methylnicotinamide, were analyzed in mitogen-stimulated preparations of human T lymphocytes. Mitogen stimulation with the phorbol ester TPA and a monoclonal antibody to the T3 cell surface antigen caused an increase in cellular NAD and ATP levels and a marked increase in glucose metabolism as demonstrated by an increase in cellular levels of glucose 6-phosphate and a sevenfold increase in radioactive CO2 formation from [l-14C]glucose. 6-Aminonicotinamide had drastic inhibitory effects on the mitogen-stimulated increases in NAD and ATP levels as well as on the metabolism of glucose. Treatment of the mitogen-stimulated cells with 6-aminonicotinamide also caused a marked increase in cellular levels of 6-phosphogluconate, suggesting inhibition of the hexose monophosphate shunt at 6-phosphogluconate dehydrogenase. Radioactive CO2 formation from [6-14C]glucose showed that metabolism through the tricarboxylic acid cycle was not used to compensate for the inhibition of the hexose monophosphate shunt pathway. Treatment of cells with 3-aminobenzamide had the opposite effect of 6-aminonicotinamide in that cellular NAD levels increased, presumable due to inhibition of poly(ADP-ribose) polymerase. 3-Aminobenzamide did not interfere with ATP or glucose 6-phosphate levels and did not cause significant elevations of 6-phosphogluconate. Thus, 6-aminonicotinamide appears to have direct inhibitory effects on the synthesis of both pyridine nucleotides and poly(ADP-ribose), whereas 3-aminobenzamide has its major inhibitory effect on poly(ADP-ribose) synthesis. 5-Methylnicotinamide also interferes with the mitogen-stimulated increase in NAD levels but not as effectively as 6-aminonicotinamide. The alterations in pyridine nucleotide metabolism resulting from treatment with these nicotinamide analogs can produce drastic and diverse alterations in pathways of glucose utilization and energy generation.  相似文献   

4.
The inhibitory effects of nicotinamide analogs on the activity of poly(ADP-ribose)) synthetase were compared to effects on precursor incorporation into macromolecules in three lines of hepatoma cells (Morris hepatomas 5123C, 7777 and HTC). N'-methylnicotinamide was a less effective inhibitor of poly (ADP-ribose) synthetase than was 1-methylnicotinamide while both these compounds had smaller inhibitory effects on the enzyme than were seen with nicotinamide or 3-aminobenzamide. On the other hand, the incorporation of [3H]thymidine into DNA and of [3H]uridine into RNA were inhibited by N'-methylnicotinamide in the concentration range 2-20 mM but not by 1-methylnicotinamide. Under the conditions examined there were no significant effects on the incorporation of [14C]lysine and [3H]leucine in hepatoma cells. The data indicated that the inhibitory effect of N'-methylnicotinamide on nucleic acid synthesis may be unrelated to action on poly (ADP-ribose) synthetase.  相似文献   

5.
DNA strand breaks, NAD metabolism, and programmed cell death   总被引:16,自引:0,他引:16  
An intimate relationship exists between DNA single-strand breaks, NAD metabolism, and cell viability in quiescent human lymphocytes. Under steady-state conditions, resting lymphocytes continually break and rejoin DNA. The balanced DNA excision-repair process is accompanied by a proportional consumption of NAD for poly(ADP-ribose) synthesis. However, lymphocytes have a limited capacity to resynthesize NAD from nicotinamide. An increase in DNA strand break formation in lymphocytes, or a block in DNA repair, accelerates poly(ADP-ribose) formation and may induce lethal NAD and ATP depletion. In this way, the level of DNA single-strand breaks in the lymphocyte nucleus is linked to the metabolic activity of the cytoplasm. The programmed removal of lymphocytes (and perhaps of other cells) with damaged DNA, may represent a novel physiologic function for poly(ADP-ribose)-dependent NAD cycling.  相似文献   

6.
Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts   总被引:5,自引:0,他引:5  
Exposure of human fibroblasts to 5 J/m2 of UV light resulted in a rapid increase of up to 1500% in the intracellular content of poly(ADP-ribose) and a rapid depletion of its metabolic precursor, NAD. When added just prior to UV treatment, the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, totally blocked both the increase of poly(ADP-ribose) and decrease in NAD for up to 2.5 h. Addition of 3-aminobenzamide at the time of maximal accumulation of poly(ADP-ribose) resulted in a decrease to basal levels with a half-life of approximately 6 min. The rates of accumulation of poly(ADP-ribose) and depletion of NAD were increased in the presence of either 1-beta-arabinofuranosylcytosine or hydroxyurea. Since these agents are known to cause an additional accumulation of DNA strand breaks following UV irradiation, these data provide evidence for a mechanism in which the rate of poly(ADP-ribose) synthesis following DNA damage is regulated in intact cells by the number of DNA strand breaks. Under conditions in which the synthesis of poly(ADP-ribose) was blocked, DNA repair replication induced by UV light was neither stimulated nor inhibited.  相似文献   

7.
The dependence of ADP-ribosylation of chicken liver nuclear histones on NAD concentration in the nuclei was studied under conditions of stimulation of coenzyme synthesis by the nicotinamide and nicotinic acid as well as upon addition of various concentrations of the [Ado-U-14C]NAD nuclei to the incubation mixture. In the first case, the rate of [Ado-U-14C]NAD incorporation into the histones was decreased due to the dilution of the label by the de novo synthesized NAD. The amount of the latter formed under effects of nicotinic acid and nicotinamide increased, correspondingly, from 2,2 X 10(-5) mmol up to 4.1 X 10(-5) and 7.0 X 10(-5) mmol per mg of nuclear protein. The incorporation of [Ado-U-14C]NAD into the histones decreased from 12.0 X 10(-8) mmol after incubation of liver slides with nicotinic acid and nicotinamide down to 8.0 X 10(-8) and 7.0 X 10(-8) mmol, respectively. With a rise in the concentration of exogenous [Ado-U-14C]NAD, the level of ADP-ribosylation of nuclear histones increased, the plot [14C]NAD incorporation at the labeled coenzyme concentration of 25 X 10(-7) mM/mg of histone had a plateau. Changes in the labeled substrate concentration brought about corresponding changes in the average length of the histone-linked poly-(ADP-ribose) chain.  相似文献   

8.
Poly(ADP-ribose) polymerase specifically recognizes DNA strand breaks by its DNA-binding domain. DNA binding activates the enzyme to catalyze the formation of poly(ADP-ribose) utilizing NAD as substrate. By a molecular genetic approach we set out to inhibit this enzyme activity in a highly specific manner, thus avoiding the inherent side effects of NAD analogs which have been used extensively as enzyme inhibitors. cDNA sequences coding for the human poly(ADP-ribose) polymerase DNA-binding domain were subcloned into eucaryotic expression plasmids and transiently transfected into monkey cells. Cells were fixed with ethanol followed by incubation with NAD. Indirect double immunofluorescence to detect both overexpressed protein and poly(ADP-ribose) in situ revealed that overexpression of the DNA-binding domain greatly inhibited poly(ADP-ribosyl)ation catalyzed by the resident enzyme during NAD postincubation. The same inhibition was observed when transfected cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine to induce DNA strand breaks in vivo and subjected to trichloroacetic acid/ethanol fixation and subsequent immunofluorescence analysis, a novel method we developed for the in situ detection of polymer synthesis in intact cells. This molecular genetic approach may prove to be a selective and efficient tool to investigate possible functions of poly(ADP-ribosyl)ation in living cells.  相似文献   

9.
The reaction mechanism of automodification of poly (ADP-ribose) synthetase was studied. The synthetase, bound to nicked DNA-cellulose in a small column, was pulse-labelled with [3H]NAD in the presence of Mg2+, and then chased with [14C]NAD under the same conditions after complete washing of [3H]NAD. The poly(ADP-ribose), synthesized on the synthetase molecule, was digested with snake venom phosphodiesterase and analyzed. The [3H]-labeled product (35% of the total product) was identified as isoADP-ribose but [3H]-labelled AMP was not detected. The average chain length was 16.0 and the terminal AMP was detected as [14C]-labelled AMP. These results indicate that the initially attached ADP-ribose unit at an automodification site was successively elongated by the addition of a new ADP-ribose unit to the terminal AMP moiety.  相似文献   

10.
J L Sims  S J Berger  N A Berger 《Biochemistry》1983,22(22):5188-5194
Inhibitors of poly(ADP-ribose) polymerase stimulated the level of DNA, RNA, and protein synthesis in DNA-damaged L1210 cells but had negligible effects in undamaged L1210 cells. The poly(ADP-ribose) polymerase inhibitors stimulated DNA repair synthesis after cells were exposed to high concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (68 and 136 microM) but not after exposure to low concentrations (13.6 and 34 microM). When the L1210 cells were exposed to 136 microM N-methyl-N'-nitro-N-nitrosoguanidine, the activation of poly(ADP-ribose) polymerase resulted in the rapid depletion of oxidized nicotinamide adenine dinucleotide (NAD+) levels and subsequent depletion of adenosine 5'-triphosphate (ATP) pools. After low doses of N-methyl-N'-nitro-N-nitrosoguanidine (13.6 microM), there were only small decreases in NAD+ and ATP. Poly(ADP-ribose) polymerase inhibitors prevented the rapid fall in NAD+ and ATP pools. This preservation of the ATP pool has a permissive effect on energy-dependent functions and accounts for the apparent stimulation of DNA, RNA, and protein synthesis. Thus, the mechanism by which poly(ADP-ribose) polymerase inhibitors stimulate DNA, RNA, and protein synthesis in DNA-damaged cells appears to be mediated by their ability to prevent the drastic depletion of NAD+ pools that occurs in heavily damaged cells, thereby preserving the cells' ability to generate ATP and maintain energy-dependent processes.  相似文献   

11.
The rate of incorporation of nicotinamide-[adenosine-U-14C]adenine dinucleotide [( Ado-U-14C]NAD) into histones and the poly(ADPR) polymerase activity of chromatin suggest that the NAD-dependent ADP-ribosylation of histones depends on the rate of NAD hydrolysis by glycohydrolase in chicken liver nuclei. With a rise in the NAD-glycohydrolase activity after treatment of nuclei with Triton X-100 the synthesis of poly(ADP-ribose) via the poly(ADPR)polymerase reaction is augmented, as a result of which the rate of [Ado-U-14C]NAD incorporation into total histones is increased. On the contrary, the decrease of NAD-glycohydrolase hydrolysis after treatment of nuclei with SDS lowers the poly(ADPR)polymerase activity and [Ado-U-14C]NAD incorporation into histones. Under these conditions, i. e. different rates of glycohydrolase hydrolysis of NAD in the nuclei, some redistribution of [Ado U-14C]NAD incorporation into individual histones occurs.  相似文献   

12.
Poly(ADP-ribose) in the cellular response to DNA damage   总被引:32,自引:0,他引:32  
Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Electronmicroscopic studies show that poly(ADP-ribose) unwinds the tightly packed nucleosomal structure of isolated chromatin. Recent studies also show that the presence of poly(ADP-ribose) enhances the activity of DNA ligase. This may increase the capacity of the cell to complete DNA repair. Inhibitors of poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of poly(ADP-ribose) persists and the activated enzyme is capable of totally consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest.  相似文献   

13.
We used two different approaches to develop cell lines deficient in poly(ADP-ribose) synthesis to help determine the role of this reaction in cellular functions. One approach to this problem was to develop cell lines deficient in enzyme activity; the other approach was to develop cell lines capable of growing with such low nicotinamide adenine dinucleotide (NAD) levels so as to effectively limit substrate availability for poly(ADP-ribose) synthesis. The selection strategy for obtaining cells deficient in activity of poly(ADP-ribose) polymerase was based on the ability of this enzyme to deplete cellular NAD in response to high levels of DNA damage. Using this approach, we first obtained cell lines having 37-82% enzyme activity compared to their parental cells. We now report the development and characterization of two cell lines which were obtained from cells having 37% enzyme activity by two additional rounds of further mutagenization and selection procedures. These new cell lines contain 5-11% enzyme activity compared to the parental V79 cells. In pursuit of the second strategy, to obtain cells which limit poly(ADP-ribose) synthesis by substrate restriction, we have now isolated spontaneous mutants from V79 cells which can grow stably in the absence of free nicotinamide or any of its analogs. These cell lines maintain NAD levels in the range of 1.5-3% of that found in their parental V79 cells grown in complete medium. The pathway of NAD biosynthesis in these NAD-deficient cells is not yet known. Further characterization of these lines showed that under conditions that restricted poly(ADP-ribose) synthesis, they all had prolonged doubling times and increased frequencies of sister chromatid exchanges.  相似文献   

14.
Choleragen catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide; nicotinamide production was dramatically increased by L-arginine methyl ester and to a lesser extent by D- or L-arginine, but not by other basic amino acids. Guanidine was also effective. Nicotinamide formation in the presence of L-arginine methyl ester was greatest under conditions previously shown to accelerate the hydrolysis of NAD by choleragen (Moss, J., Manganiello, V. C., and Vaughan, M. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 4424-4427). After incubation of [adenine-U14C]NAD and L[3H]arginine with coleragen, a product was isolated by thin layer chromatography that contained adenine and arginine in a 1:1 ratio and has been tentatively identified as ADP-ribose-L-arginine. Parallel experiments with [carbonyl-14C]NAD have demonstrated that formation of the ADP-ribosyl-L-arginine derivative was associated with the production of [carbonyl-14C]nicotinamide. As guanidine itself was active and D- and L-arginine was equally effective in promoting nicotinamide production, whereas citrulline, which possesses a ureido rather than a guanidino function, was inactive, it seems probable that the guanidino group rather than the alpha-amino moiety participated in the linkage to ADP-ribose. Based on the assumption that the ADP-ribosylation of L-arginine by choleragen is a model for the NAD-dependent activation of adenylate cyclase by choleragen, it is proposed that the active A protomer of choleragen catalyzes the ADP-ribosylation of an arginine, or related amino acid residue in a protein, which is the cyclase itself or is critical to its activation by choleragen.  相似文献   

15.
Unscheduled DNA synthesis has been measured in human fibroblasts under conditons of reduced rates of conversion of NAD to poly(ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of UV induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with UV or N-methyl-N′-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.  相似文献   

16.
Previous attempts to produce anti-(ADP-ribose) antibodies by immunization of rabbits with ADP-ribose conjugated to serum albumin had resulted in the production of 5'AMP-specific antibodies [Bredehorst et al. (1978) Eur. J. Biochem. 82, 105-113]. To obtain true anti-(ADP-ribose) antibodies an antigen was constructed that was resistant to enzymic degradation at the pyrophosphate group. The enzymically active beta-methylene derivative of NAD (NAD[CH2]) was synthesized from ADP containing a methylene bridge (CH2) instead of an oxygen in the diphosphate group. NAD[CH2] was converted to its N6-[(2-carboxyethyl)thiomethyl] derivative and hydrolyzed to the corresponding ADP[CH2]-ribose derivative which was then coupled to bovine serum albumin. The antibodies obtained with this antigen were specific for free or protein-bound ADP-ribose groups, except for a cross-reaction with FAD, AMP, ADP, ATP or poly(ADP-ribose) interfered with [3H]ADP-ribose tracer binding only at higher concentrations. No interference was observed with poly(A), RNA and DNA at 6000-fold excess. The antibodies were purified on a novel type of affinity matrix. This was formed from NAD and guanidinobutyrate by a cholera-toxin-catalyzed reaction and the product, ADP-ribosyl guanidinobutyrate, was bound to Affi Gel by carbodiimide-aided condensation. The purified antibodies allowed the detection of ADP-ribose conjugated to polypeptides in amounts lower than 1 pmol as demonstrated by immunoblotting of [14C]ADP-ribosylated elongation factor 2. They also could be used to observe in situ, by indirect immunofluorescence, the increased mono(ADP-ribosyl)ation of nuclear proteins in dimethyl-sulfate-treated cells, and to show that histone H2B was the principal histone acceptor of single ADP-ribose groups in alkylated 3T3 cells.  相似文献   

17.
1. The effect of injecting nicotinamide on the incorporation of [(14)C]orotate into the hepatic nucleic acids of rats after partial hepatectomy was investigated. 2. At 3h after partial hepatectomy the rapid incorporation of [(14)C]orotate into RNA, and at 20h after partial hepatectomy the incorporation of [(14)C]orotate into both RNA and DNA, were inhibited in a dose-dependent fashion by the previous injection of nicotinamide. 3. The injection of nicotinamide at various times before the injection of [(14)C]orotate at 20h after partial hepatectomy revealed an inhibition of the incorporation of orotate into RNA and DNA which was non-linear with respect to the duration of nicotinamide pretreatment. 4. The induction of a hepatic ATP depletion by ethionine demonstrated that the synthesis of hepatic NAD and NADP in partially hepatectomized rats was more susceptible to an ATP deficiency than in control rats. 5. The total hepatic activity of ribose phosphate pyrophosphokinase (EC 2.7.6.1) was assayed at various times after partial hepatectomy and found to be only marginally greater than the maximum rate of hepatic NAD synthesis induced in vivo by nicotinamide injection between 12 and 24h after partial hepatectomy. 6. It is suggested that a competition exists between NAD synthesis and purine and pyrimidine nucleotide synthesis for available ATP and particularly 5-phosphoribosyl 1-pyrophosphate. In regenerating liver the competition is normally in favour of the synthesis of nucleic acid precursors, at the expense of NAD synthesis. This situation may be reversed by the injection of nicotinamide with a subsequent inhibition of nucleic acid synthesis.  相似文献   

18.
The metabolic fate of [carbonyl-(14)C]nicotinamide, [8-(14)C]adenine and [8-(14)C]inosine was examined in microspore-derived canola (Brassica napus) embryos at different developmental stages: globular stage (day 10, stage 1), early cotyledonary stage (day 20, stage 2), late cotyledonary stage (day 25, stage 3), and fully developed stage (day 35, stage 4). Uptake of [8-(14)C]nicotinamide by the embryos was always rapid. A lower uptake rate was found for [8-(14)C]adenine and [8-(14)C]inosine, especially at stages 1 and 2. [Carbonyl-(14)C]nicotinamide was converted to nicotinic acid and further metabolized to pyridine nucleotides (NAD/NADP). Some radioactivity was also associated to nicotinic acid glucoside. [8-(14)C]adenine was efficiently utilized for the synthesis of adenine nucleotides and RNA. A small fraction of adenine was degraded to CO(2) via ureides. Up to 40% of [8-(14)C]inosine was salvaged to nucleotides and RNA, although degradation of [8-(14)C]inosine to CO(2) was pronounced. At stage 1, highest salvage activities of nicotinamide, adenine and inosine were observed. In contrast, the lowest purine salvage and highest purine catabolism were found in stage 3 embryos. These results suggest that both nicotinamide and purine salvage for NAD/NADP and purine nucleotides synthesis are extremely high in the globular stage (stage 1). These activities decrease gradually until the late cotyledonary stage (stage 3), before increasing again in the fully developed embryos (stage 4). Overall it appears that nicotinamide and purine salvage are required in support of active growth during the initial phases of embryogenesis and at the end of the maturation period, in preparation for post-embryonic growth.  相似文献   

19.
We have shown previously that alloxan and streptozotocin, two major diabetogenic agents, cause DNA strand breaks in rat pancreatic islets and stimulate nuclear poly(ADP-ribose) synthetase, thereby depleting intracellular NAD level and inhibiting proinsulin synthesis (Okamoto, H. (1981) Mol. Cell. Biochem. 37, 43-61; Yamamoto, H., Uchigata, Y., and Okamoto, H. (1981) Nature 294, 284-286). In the present study, superoxide dismutase and catalase, scavengers of radical oxygens, were found to protect against islet DNA strand breaks and inhibition of proinsulin synthesis induced by alloxan. The radical scavengers did not affect islet DNA strand breaks or inhibition of proinsulin synthesis induced by streptozotocin. On the other hand, compounds that inhibit islet nuclear poly(ADP-ribose) synthetase were found to protect against alloxan- as well as streptozotocin-induced inhibition of proinsulin synthesis. The poly(ADP-ribose) synthetase inhibitors were ineffective in protection against DNA strand breaks induced by the agents. These results may provide an important clue for elucidating the prevention of insulin-dependent diabetes as well as for understanding the cause of diabetes.  相似文献   

20.
A possible role of poly(ADP-ribose) synthesis in modulating the response of V79 cells to DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) was investigated. Inhibition of [3H]thymidine (dThd) incorporation into DNA and lowering of NAD+ levels in intact cells were employed as parameters of DNA-synthesis inhibition and poly(ADP-ribose) synthesis, respectively. Dose responses of these parameters were studied in cells 2 and 24 h after treatment with the methylating agents in medium with or without dThd. The initial inhibition of DNA synthesis was uniformly associated with stimulation of poly(ADP-ribose) synthesis whether the cells were treated with MNNG or MMS, incubated with or without 20 microM dThd which did not inhibit poly(ADP-ribose) synthesis, or incubated with 3 mM dThd which did inhibit the latter synthesis. By contrast, the DNA-synthesis inhibition detected 24 h after treatment with MNNG was not associated with poly(ADP-ribose) synthesis. These data suggest that (i) the mechanism of this later inhibition of DNA synthesis is different from that of the initial inhibition, (ii) DNA-synthesis inhibition does not stimulate poly(ADP-ribose) synthesis, and (iii) single-strand breaks, resulting from N-methylation of the DNA, stimulate poly(ADP-ribose) synthesis, which may produce the initial inhibition of DNA synthesis. The initial inhibition of DNA synthesis was not uniformly associated with mutagenesis and dThd facilitation of MNNG-induced cytotoxicity and mutagenesis. This indicates that O-methylation of DNA does not stimulate poly(ADP-ribose) synthesis. Our data suggest that, in V79 cells treated with methylating agents, poly(ADP-ribose) synthesis is stimulated by single-strand breaks, inhibits DNA synthesis, and thereby serves to allow time for repair of the DNA prior to replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号