首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.  相似文献   

2.
Electron Paramagnetic Resonance (EPR) spectroscopy is the method of choice to study paramagnetic cofactors that often play an important role as active centers in electron transfer processes in biological systems. However, in many cases more than one paramagnetic species is contributing to the observed EPR spectrum, making the analysis of individual contributions difficult and in some cases impossible. With time-domain techniques it is possible to exploit differences in the relaxation behavior of different paramagnetic species to distinguish between them and separate their individual spectral contribution. Here we give an overview of the use of pulsed EPR spectroscopy to study the iron-sulfur clusters of NADH:ubiquinone oxidoreductase (complex I). While FeS cluster N1 can be studied individually at a temperature of 30 K, this is not possible for FeS cluster N2 due to its severe spectral overlap with cluster N1. In this case Relaxation Filtered Hyperfine (REFINE) spectroscopy can be used to separate the overlapping spectra based on differences in their relaxation behavior.  相似文献   

3.
The proton-pumping NADH:ubiquinone oxidoreductase, also called respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to 9 iron-sulfur (Fe/S) clusters participate in the redox reaction. There is discussion that the EPR-detectable Fe/S cluster N2 is involved in proton pumping. However, the assignment of this cluster to a distinct subunit of the complex as well as the number of Fe/S clusters giving rise to the EPR signal are still under debate. Complex I from Escherichia coli consists of 13 polypeptides called NuoA to N. Either subunit NuoB or NuoI could harbor Fe/S cluster N2. Whereas NuoB contains a unique motif for the binding of one Fe/S cluster, NuoI contains a typical ferredoxin motif for the binding of two Fe/S clusters. Individual mutation of all four conserved cysteine residues in NuoB resulted in a loss of complex I activity and of the EPR signal of N2 in the cytoplasmic membrane as well as in the isolated complex. Individual mutations of all eight conserved cysteine residues of NuoI revealed a variable phenotype. Whereas cluster N2 was lost in most NuoI mutants, it was still present in the cytoplasmic membranes of the mutants NuoI C63A and NuoI C102A. N2 was also detected in the complex isolated from the mutant NuoI C102A. From this we conclude that the Fe/S cluster N2 is located on subunit NuoB.  相似文献   

4.
The high-affinity QH ubiquinone-binding site in the bo(3) ubiquinol oxidase from Escherichia coli has been characterized by an investigation of the native ubiquinone radical anion QH(*-) by pulsed electron paramagnetic resonance (EPR) spectroscopy. One- and two-dimensional electron spin-echo envelope modulation (ESEEM) spectra reveal strong interactions of the unpaired electron of QH(*-) with a nitrogen nucleus from the surrounding protein matrix. From analysis of the experimental data, the (14)N nuclear quadrupolar parameters have been determined: kappa = e(2)qQ/4h = 0.93 MHz and eta = 0.50. This assignment is confirmed by hyperfine sublevel correlation (HYSCORE) spectroscopy. On the basis of a comparison of these data with those obtained previously for other membrane-protein bound semiquinone radicals and model systems, this nucleus is assigned to a protein backbone nitrogen. This result is discussed with regard to the location and potential function of QH in the enzyme.  相似文献   

5.
The Elp3 subunit of the Elongator complex is highly conserved from archaea to humans and contains a well-characterized C-terminal histone acetyltransferase (HAT) domain. The central region of Elp3 shares significant sequence homology to the Radical SAM superfamily. Members of this large family of bacterial proteins contain a FeS cluster and use S-adenosylmethionine (SAM) to catalyse a variety of radical reactions. To biochemically characterize this domain we have expressed and purified the corresponding fragment of the Methanocaldococcus jannaschii Elp3 protein. The presence of a Fe4S4 cluster has been confirmed by UV-visible spectroscopy and electron paramagnetic resonance (EPR) spectroscopy and the Fe content determined by both a colorimetric assay and atomic absorption spectroscopy. The cysteine residues involved in cluster formation have been identified by site-directed mutagenesis. The protein binds SAM and the binding alters the EPR spectrum of the FeS cluster. Our results provide biochemical support to the hypothesis that Elp3 does indeed contain the Fe4S4 cluster which characterizes the Radical SAM superfamily and binds SAM, suggesting that Elp3, in addition to its HAT activity, has a second as yet uncharacterized catalytic function. We also present preliminary data to show that the protein cleaves SAM.  相似文献   

6.
Ech hydrogenase from Methanosarcina barkeri is a member of a distinct group of membrane-bound [NiFe] hydrogenases with sequence similarity to energy-conserving NADH:quinone oxidoreductase (complex I). The sequence of the enzyme predicts the binding of three [4Fe-4S] clusters, one by subunit EchC and two by subunit EchF. Previous studies had shown that two of these clusters could be fully reduced under 10(5) Pa of H2 at pH 7 giving rise to two distinct S1/2 electron paramagnetic resonance (EPR) signals, designated as the g = 1.89 and the g = 1.92 signal. Redox titrations at different pH values demonstrated that these two clusters had a pH-dependent midpoint potential indicating a function in ion pumping. To assign these signals to the subunits of the enzyme a set of M. barkeri mutants was generated in which seven of eight conserved cysteine residues in EchF were individually replaced by serine. EPR spectra recorded from the isolated mutant enzymes revealed a strong reduction or complete loss of the g = 1.92 signal whereas the g = 1.89 signal was still detectable as the major EPR signal in five mutant enzymes. It is concluded that the cluster giving rise to the g = 1.89 signal is the proximal cluster located in EchC and that the g = 1.92 signal results from one of the clusters of subunit EchF. The pH-dependence of these two [4Fe-4S] clusters suggests that they simultaneously mediate electron and proton transfer and thus could be an essential part of the proton-translocating machinery.  相似文献   

7.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

8.
The interaction of the reduced[2Fe-2S] cluster of isolated Rieske fragment from the bc1 complex of Rhodobacter sphaeroides with nitrogens (14N and 15N) from the local protein environment has been studied by X- and S-band pulsed EPR spectroscopy. The two-dimensional electron spin echo envelope modulation spectra of uniformly 15N-labeled protein show two well resolved cross-peaks with weak couplings of approximately 0.3-0.4 and 1.1 MHz in addition to couplings in the range of 6-8 MHz from two coordinating Ndelta of histidine ligands. The quadrupole coupling constants for weakly coupled nitrogens determined from S-band electron spin echo envelope modulation spectra identify them as Nepsilon of histidine ligands and peptide nitrogen (Np), respectively. Analysis of the line intensities in orientation-selected S-band spectra indicated that Np is the backbone N-atom of Leu-132 residue. The hyperfine couplings from Nepsilon and Np demonstrate the predominantly isotropic character resulting from the transfer of unpaired spin density onto the 2s orbitals of the nitrogens. Spectra also show that other peptide nitrogens in the protein environment must carry a 5-10 times smaller amount of spin density than the Np of Leu-132 residue. The appearance of the excess unpaired spin density on the Np of Leu-132 residue indicates its involvement in hydrogen bond formation with the bridging sulfur of the Rieske cluster. The configuration of the hydrogen bond therefore provides a preferred path for spin density transfer. Observation of similar splittings in the 15N spectra of other Rieske-type proteins and [2Fe-2S] ferredoxins suggests that a hydrogen bond between the bridging sulfur and peptide nitrogen is a common structural feature of [2Fe-2S] clusters.  相似文献   

9.
Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX31-39CCX35-36CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (gzyx = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. 57Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with 57Fe hyperfine couplings very similar to that of CoM-HDR. CoM-33SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S3(O/N)1 geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site.  相似文献   

10.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

11.
Bridges HR  Bill E  Hirst J 《Biochemistry》2012,51(1):149-158
In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use M?ssbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.  相似文献   

12.
 The isotropic hyperfine couplings of cysteine β-protons in iron-sulfur clusters of proteins provide information about the structure and conformation of the clusters if their magnetic resonance peaks can be resolved and assigned. The application of two-dimensional ESEEM (HYSCORE) spectroscopy to the reduced [2Fe-2S] cluster in ferredoxin from red marine algae Porfira umbilicalis is described. After deuterium substitution of the exchangeable protons, highly-resolved, orientationally-selected HYSCORE spectra show cross-peaks from strongly coupled, nonexchangeable protons. When cross-peaks from all the HYSCORE spectra are linearized and transformed to a common nuclear Zeeman frequency, they fall along five straight lines. Four of these sets of peaks are assigned to β-protons of the cysteine ligands. The isotropic and anisotropic hyperfine couplings for these protons are extracted from the slopes and intercepts of these lines. Two rescaling procedures are examined for the conversion of the experimentally measured isotropic couplings from different irons in [2Fe-2S] and [4Fe-4S] clusters. The couplings from P. umbilicalis appear to fit the same empirical dependence on Fe-S-C-H dihedral angle as do the couplings from a [4Fe-4S] model cluster. A method to assign protons for proteins of unknown structure is proposed that yields the correct assignment as derived from the crystal structure of the highly homologous protein from Spirulina platensis. The conformations of the cysteines in the reduced protein, derived without any adjustable parameters from this procedure and the empirical functions, are consistent with those reported for the latest refinement of the crystal structure of the oxidized protein. Received: 24 September 1997 / Accepted: 28 October 1997  相似文献   

13.
The sequence motif-specific assignment of the two distinct [2Fe-2S] clusters in rat xanthine oxidoreductase (XOR) was unequivocally established by site-directed mutagenesis of recombinant enzymes expressed in a baculovirus-insect cell system and electron paramagnetic resonance (EPR) spectroscopy. The conserved cysteine residues, including Cys-115, in the unusual C-terminal -Cys-Xaa(2)-Cys-//-Cys-Xaa(1)-Cys- motif serve as ligands to the Fe/S I center, which is probably located in close proximity to the Mo-pterin center. Other conserved cysteine residues, including Cys-43 and Cys-51, in the N-terminal plant ferredoxin-like motif serve as ligands to the Fe/S II center, which is distantly located from the Mo-pterin center. The present sequence motif-specific assignment of the Fe/S I and II centers is discussed in the light of the structural features of XOR.  相似文献   

14.
Bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of a peripheral and a membrane domain. The peripheral domain catalyzes the electron transfer from NADH to quinone through a chain of seven iron-sulfur (Fe/S) clusters. Subunit NuoI in the peripheral domain contains two [4Fe-4S] clusters (N6a and N6b) and plays a role in bridging the electron transfer from cluster N5 to the terminal cluster N2. We constructed mutants for eight individual Cys-coordinating Fe/S clusters. With the exception of C63S, all mutants had damaged architecture of NDH-1, suggesting that Cys-coordinating Fe/S clusters help maintain the NDH-1 structure. Studies of three mutants (C63S-coordinating N6a, P110A located near N6a, and P71A in the vicinity of N6b) were carried out using EPR measurement. These three mutations did not affect the EPR signals from [2Fe-2S] clusters and retained electron transfer activities. Signals at g(z) = 2.09 disappeared in C63S and P110A but not in P71A. Considering our data together with the available information, g(z,x) = 2.09, 1.88 signals are assigned to cluster N6a. It is of interest that, in terms of g(z,x) values, cluster N6a is similar to cluster N4. In addition, we investigated the residues (Ile-94 and Ile-100) that are predicted to serve as electron wires between N6a and N6b and between N6b and N2, respectively. Replacement of Ile-100 and Ile-94 with Ala/Gly did not affect the electron transfer activity significantly. It is concluded that conserved Ile-100 and Ile-94 are not essential for the electron transfer.  相似文献   

15.
Uhlmann M  Friedrich T 《Biochemistry》2005,44(5):1653-1658
The proton-pumping NADH:ubiquinone oxidoreductase, which is also called respiratory complex I, transfers electrons from NADH to ubiquinone via one flavin mononucleotide (FMN) and up to nine iron-sulfur clusters. A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria. The isolated Escherichia coli complex I can be split into a NADH dehydrogenase fragment, a connecting fragment, and a membrane fragment. The soluble NADH dehydrogenase fragment represents the electron input part of the complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur clusters have been detected in this fragment by means of EPR spectroscopy. One of the EPR signals, called N1c, has spectral properties, which are not found in preparations of the complex from other organisms. Therefore, it is attributed to an additional binding motif on NuoG, which is present only in a few bacteria including E. coli. Here, we show by means of EPR spectroscopic analysis of the NADH dehydrogenase fragment containing site-directed mutations on NuoG that the EPR signals in question derived from cluster N1a on NuoE. The mutations in NuoG disturbed the assembly of the overproduced NADH dehydrogenase fragment indicating that a yet undetected cluster might be bound to the additional motif. Thus, there is no third binuclear iron-sulfur "N1c" in the E. coli complex I but an additional tetranuclear cluster that may be coined N7.  相似文献   

16.
The number and type of iron-sulfur clusters present in the NADH dehydrogenase of the mammalian respiratory chain were studied by a combination of low temperature magnetic circular dichroism (MCD) and quantitative electron paramagnetic resonance spectroscopies. MCD was used with the high molecular weight, soluble enzyme, and EPR was used with both the purified enzyme and Complex I (NADH:ubiquinone oxidoreductase). The results of the EPR experiments of the two types of preparations agreed with each other, as well as with the data in the literature for various types of membrane-bound preparations. The two methods gave concordant results showing the presence of one binuclear and of three tetranuclear NADH-reducible iron-sulfur clusters. Earlier studies using the cluster extrusion technique indicated a higher ratio of binuclear to tetranuclear clusters which may be explained by cluster interconversion during the extrusion process.  相似文献   

17.
The bifurcated reaction at the Q(o)-site of the bc(1) complex provides the mechanistic basis of the proton pumping activity through which the complex conserves redox energy in the proton gradient. Structural information about the binding of quinone at the site is lacking, because the site is vacant in crystals of the native complexes. We now report the first structural characterization of the interaction of the native quinone occupant with the Rieske iron-sulfur protein in the bc(1) complex of Rhodobacter sphaeroides, using high resolution EPR. We have compared the binding configuration in the presence of quinone with the known structures for the complex with stigmatellin and myxothiazol. We have shown by using EPR and orientation-selective electron spin echo envelope modulation (ESEEM) measurements of the iron-sulfur protein that when quinone is present in the site, the isotropic hyperfine constant of one of the N(delta) atoms of a liganding histidine of the [2Fe-2S] cluster is similar to that observed when stigmatellin is present and different from the configuration in the presence of myxothiazol. The spectra also show complementary differences in nitrogen quadrupole splittings in some orientations. We suggest that the EPR characteristics, the ESEEM spectra, and the hyperfine couplings reflect a similar interaction between the iron-sulfur protein and the quinone or stigmatellin and that the N(delta) involved is that of a histidine (equivalent to His-161 in the chicken mitochondrial complex) that forms both a ligand to the cluster and a hydrogen bond with a carbonyl oxygen atom of the Q(o)-site occupant.  相似文献   

18.
The redox properties of the cofactors of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli were studied by following the changes in electron paramagnetic resonance (EPR) and optical spectra upon electrochemical redox titration of the purified protein. At neutral pH, the FMN cofactor had a midpoint redox potential ( E m) approximately -350 mV ( n = 2). Binuclear FeS clusters were well-characterized: N1a was titrated with a single ( n = 1) transition, and E m = -235 mV. In contrast, the titration of N1b can only be fitted with the sum of at least two one-electron Nernstian curves with E m values of -245 and -320 mV. The tetranuclear clusters can also be separated into two groups, either having a single, n = 1, or more complex redox titration curves. The titration curves of the EPR bands attributed to the tetranuclear clusters N2 ( g = 2.045 and g = 1.895) and N6b ( g = 2.089 and g = 1.877) can be presented by the sum of at least two components, each with E m (app) approximately -200/-300 mV and -235/-315 mV, respectively. The titration of the signals at g = 1.956-1.947 (N3 or N7, E m = -315 mV), g = 2.022, and g = 1.932 (Nx, -365 mV) and the low temperature signal at g = 1.929 (N4 or N5, -330 mV) followed Nernstian n = 1 curves. The observed redox titration curves are discussed in terms of intrinsic electrostatic interactions between FeS centers in complex I. A model showing shifts of E m due to the electrostatic interaction between the centers is presented.  相似文献   

19.
M D Ballinger  P A Frey  G H Reed 《Biochemistry》1992,31(44):10782-10789
Electron paramagnetic resonance (EPR) spectroscopy has been used to characterize an organic radical that appears in the steady state of the reaction catalyzed by lysine 2,3-aminomutase from Clostridium SB4. Results of a previous electron paramagnetic resonance (EPR) study [Ballinger, M. D., Reed, G. H., & Frey, P. A. (1992) Biochemistry 31, 949-953] demonstrated the presence of EPR signals from an organic radical in reaction mixtures of the enzyme. The materialization of these signals depended upon the presence of the enzyme, all of its cofactors, and the substrate, lysine. Changes in the EPR spectrum in response to deuteration in the substrate implicated the carbon skeleton of lysine as host for the radical center. This radical has been further characterized by EPR measurements on samples with isotopically substituted forms of lysine and by analysis of the hyperfine splittings in resolution-enhanced spectra by computer simulations. Changes in the hyperfine splitting patterns in EPR spectra from samples with [2-2H]lysine and [2-13C]-lysine show that the paramagnetic species is a pi-radical with the unpaired spin localized primarily in a p orbital on C2 of beta-lysine. In the EPR spectrum of this radical, the alpha-proton, the beta-nitrogen, and the beta-proton are responsible for the hyperfine structure. Analysis of spectra for reactions initiated with L-lysine, [3,3,4,4,5,5,6,6-2H8]lysine, [2-2H]lysine, perdeuteriolysine, [alpha-15N]lysine, and [alpha-15N,2-2H]lysine permit a self-consistent assignment of hyperfine splittings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two proteins with similarity to IscA are encoded in the genome of the cyanobacterium Synechocystis PCC 6803. One of them, the product of slr1417 which accounts for 0.025% of the total soluble protein of Synechocystis was over-expressed in E. coli and purified. The purified protein was found to be mainly dimeric and did not contain any cofactor. Incubation with iron ions, cysteine and Synechocystis IscS led to the formation of one [2Fe2S] cluster at an IscA dimer as demonstrated (by the binding of about one iron and one sulfide ion per IscA monomer) by UV/Vis, EPR and M?ssbauer spectroscopy. M?ssbauer spectroscopy further indicated that the FeS cluster was bound by four cysteine residues. Site-directed mutagenesis revealed that of the five cysteine residues only C110 and C112 were involved in cluster binding. It was therefore concluded that the [2Fe2S] cluster is located between the two protomers of the IscA dimer and ligated by C110 and C112 of both protomers. The cluster could be transferred to apo ferredoxin, a [2Fe2S] protein, with a half-time of 10 min. Surprisingly, incubation of cluster-containing IscA with apo adenosine 5'-phosphosulfate reductase led to a reactivation of the enzyme which requires the presence of a [4Fe4S] cluster. This demonstrates that it is possible to build [4Fe4S] clusters from [2Fe2S] units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号