首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipocalins are proteins with highly homologous structures but diverse sequences that are potential candidates for scaffold protein engineering with novel ligand-binding functions. Numerous crystal structures of lipocalin-ligand complexes have been identified and used in the study of their binding modes. On the other hand, crystallization studies cannot meet the increasing demand for novel lipocalin-ligand complexes in scaffold engineering, which requires rapid computational analyses of their binding modes in parallel. Human retinol-binding protein (RBP) and apolipoprotein D (apoD) are sequentially very distant proteins, but they show tight binding against retinoids, such as retinol and retinoic acid. In the present study, complexes of the two lipocalins with retinol and retinoic acid were modeled computationally by a molecular docking simulation, and their ligand-binding modes were analyzed at a molecular level. The models identified the crucial residues of lipocalins that interact with the ligands and revealed the similarities and differences in their retinoid-binding modes as well as in the specific interactions of the retinoid species within the same lipocalin. An analysis of the amino acid propensity of the retinoid-binding residues suggested that the evolutionary preference of the residues is restricted to the binding pocket rather than the entire protein. The distribution of charged residues around the terminus of retinoic acid showed a huge difference between RBP and ApoD, which might be a factor for the different binding affinities of lipocalins against retinoic acid. This in silico study is expected to be applied to scaffold protein engineering for novel retinoid-binding lipocalins.  相似文献   

2.
Polyacrylamide gel electrophoresis and isoelectrofocusing followed by immunoblotting technique with an anti-human retinol-binding protein (RBP) serum were used to study holo-RBP and apo-RBP in human plasma. Three observations were made the technique allowed for the first time to directly and quantitatively analyse holo- and apo-RBP. Holo-RBP represented 97.86 +/- 0.78% and apo-RBP 1.94 +/- 0.73% of the total RBP. All-trans-retinoic acid (RA) was found to bind to apo-RBP and to significantly modify the tertiary structure of the protein; this raises the question of RBP involvement in the transport of RA. reconstitution of holo-RBP using apo-RBP from delipidized serum was achieved only after its incubation with natural all-trans-retinoids such as retinol, 3-dehydroretinol and retinoic acid but not with synthetic analogs of retinoic acid (13-cis-retinoic acid, TMMP, 13-cis-TMMP, TTNPB). It appears that RBP has a structure specificity for natural retinoids.  相似文献   

3.
A minigene encoding rat retinol-binding protein (RBP) was transfected into HeLa cells, which do not express endogenous RBP, transthyretin, or cellular retinol-binding protein. The HeLa cells manufactured and secreted the transfected gene product, demonstrating that RBP-transthyretin assembly is not a requirement for the secretion of RBP. When HeLa cells were grown under vitamin A-deficient conditions, RBP accumulated in the endoplasmic reticulum. Both serum and retinol stimulated secretion of RBP in a concentration-dependent manner. The retinol-regulated secretion occurred also after protein synthesis had been blocked by cycloheximide. Addition of holo-RBP or retinal, but not retinoic acid, stimulated secretion of RBP. Thus, an in vitro model system that resembles the rat hepatocyte in vivo with regard to the known regulation of RBP secretion has been established in a human cell line of extrahepatic origin. It can be concluded that cellular retinol-binding protein is not required for the transfer of retinol to RBP and that the mechanism whereby retinol controls the intracellular transport of RBP is neither specific for tissues synthesizing RBP nor species-specific. To investigate the structural properties responsible for the endoplasmic reticulum retention of RBP in the absence of its ligand, a cDNA encoding chicken purpurin, a protein that is 50% identical to RBP and that binds retinol, was expressed in HeLa cells. In contrast to RBP, purpurin was not retained in vitamin A-deficient HeLa cells.  相似文献   

4.
RBP4 (plasma retinol-binding protein) is the 21?kDa transporter of all-trans retinol that circulates in plasma as a moderately tight 1:1 molar complex of the vitamin with the protein. RBP4 is primarily synthesized in the liver but is also produced by adipose tissue and circulates bound to a larger protein, transthyretin, TTR, that serves to increase its molecular mass and thus avoid its elimination by glomerular filtration.This paper reports the high resolution three-dimensional structures of human RBP4 naturally lacking bound retinol purified from plasma, urine and amniotic fluid. In all these crystals we found a fatty acid molecule bound in the hydrophobic ligand-binding site, a result confirmed by mass spectrometry measurements.In addition we also report the 1.5?Å resolution structures of human holo-RBP4 and of the protein saturated with palmitic and lauric acid and discuss the interaction of the fatty acids and retinol with the protein.  相似文献   

5.
Ever since the fortuitous observation that beta-lactoglobulin (beta-Lg), the major whey protein in the milk of ruminants, bound retinol, the details of the binding have been controversial. beta-Lg is a lipocalin, like plasma retinol-binding protein, so that ligand association was expected to make use of the central cavity in the protein. However, an early crystallographic analysis and some of the more recent solution studies indicated binding elsewhere. We have now determined the crystal structures of the complexes of the trigonal form of beta-Lg at pH 7.5 with bound retinol (R=21.4% for 7329 reflections between 20 and 2.4 A resolution, R(free)=30.6%) and with bound retinoic acid (R=22.7% for 7813 reflections between 20 and 2.34 A resolution, R(free)=29.8%). Both ligands are found to occupy the central calyx in a manner similar to retinol binding in retinol-binding protein. We find no evidence of binding at the putative external binding site in either of these structural analyses. Further, competition between palmitic acid and retinol reveals only palmitate bound to the protein. An explanation is provided for the lack of ligand binding to the orthorhombic crystal form also obtained at pH 7.5. Finally, the possible function of beta-Lg is discussed in the light of its species distribution and similarity to other lipocalins.  相似文献   

6.
Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.  相似文献   

7.
Naylor HM  Newcomer ME 《Biochemistry》1999,38(9):2647-2653
Whether ultimately utilized as retinoic acid, retinal, or retinol, vitamin A is transported to the target cells as all-trans-retinol bound to retinol-binding protein (RBP). Circulating in the plasma, RBP itself is bound to transthyretin (TTR, previously referred to as thyroxine-binding prealbumin). In vitro one tetramer of TTR can bind two molecules of retinol-binding protein. However, the concentration of RBP in the plasma is limiting, and the complex isolated from serum is composed of TTR and RBP in a 1 to 1 stoichiometry. We report here the crystallographic structure at 3.2 A of the protein-protein complex of human RBP and TTR. RBP binds at a 2-fold axis of symmetry in the TTR tetramer, and consequently the recognition site itself has 2-fold symmetry: Four TTR amino acids (Arg-21, Val-20, Leu-82, and Ile-84) are contributed by two monomers. Amino acids Trp-67, Phe-96, and Leu-63 and -97 from RBP are flanked by the symmetry-related side chains from TTR. In addition, the structure reveals an interaction of the carboxy terminus of RBP at the protein-protein recognition interface. This interaction, which involves Leu-182 and Leu-183 of RBP, is consistent with the observation that naturally occurring truncated forms of the protein are more readily cleared from plasma than full-length RBP. Complex formation prevents extensive loss of RBP through glomerular filtration, and the loss of Leu-182 and Leu-183 would result in a decreased affinity of RBP for TTR.  相似文献   

8.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.  相似文献   

9.
N Noy  E Slosberg  S Scarlata 《Biochemistry》1992,31(45):11118-11124
The interactions within the molecular complex in which retinol circulates in blood were studied. To monitor binding between retinol-binding protein (RBP) and transthyretin (TTR), TTR was labeled with a long-lived fluorescence probe (pyrene). Changes in the rotational volume of TTR following its association with RBP were monitored by fluorescence anisotropy of the probe. Titration of TTR with holo-RBP revealed the presence of 1.5 binding sites characterized by a dissociation constant Kd = 0.07 microM. At 0.15 M NaCl, binding of RBP to TTR showed an absolute requirement for the native ligand, retinol. At higher ionic strength (0.5 M NaCl), RBP complexed with retinal also bound to TTR with high affinity (Kd = 0.134 microM). RBP containing retinoic acid did not bind to TTR even at the high salt concentration. The data suggest that the TTR binding site on RBP is in close proximity to the retinoid binding site and that the head group of retinoic acid, when bound to RBP, presents steric hindrance for the interactions with TTR. The implications of the data for selectivity in retinoid transport in the circulation are discussed. The kinetics of the steps leading to complete dissociation of the retinol-RBP-TTR complex was also studied. The first step of this process was dissociation of retinol, which had a rate constant of 0.06/min. Following loss of retinol, the two proteins dissociate. The rate of dissociation is slow (k = 0.055/h), however, indicating that the complex apo-RBP-TTR will be an important factor in regulating serum levels of retinol.  相似文献   

10.
在变性条件下,应用Sephacryl-100凝胶过滤和Source-30Q阴离子交换两步分离,实现了分离纯化性质不稳定、易于降解的视黄醇结合蛋白(RBP)之目的。最后经过分步缓慢复性,获得具有生物活性的RBP,为其单克隆抗体制备及最终应用于临床营养评价和相关疾病的诊断创造了条件。  相似文献   

11.
Methods have been developed for the removal of retinol from human plasma retinol-binding protein (RBP), so as to form the retinol-free apoprotein, and for the recombination of apo-RBP with retinol to again form the holoprotein. Retinol is removed from RBP by gently shaking a solution of RBP with heptane under controlled conditions. During the shaking, retinol is gradually extracted from the RBP and into the heptane phase. The reassociation of apo-RBP with retinol is achieved by exposing a solution of apo-RBP to Celite coated with a thin film of retinol, followed by isolation of the RBP by gel filtration on Sephadex G-100. This procedure results in the recombination of apo-RBP with an amount of retinol almost identical with that previously removed by extraction. The two-phase extraction procedure was used to explore some of the factors which affect the interaction of retinol with RBP. The retinol-RBP complex was most stable in the lower portion of the pH range 5.6 to 10. The rate of removal of retinol from the RBP-prealbumin complex (the form in which RBP normally circulates in plasma) was markedly less than the rate of its removal from RBP alone. The interaction of retinol with RBP appears to be stabilized by the formation of the RBP-prealbumin complex. The recombination procedure was employed to examine the specificity of the binding of retinol to RBP, by determining whether compounds other than all-trans-retinol would effectively bind to apo-RBP. Apo-RBP did not bind cholesterol, but displayed a slight affinity for phytol. The affinity of RBP for beta-carotene was minimal, whereas both retinyl acetate and retinal were bound about one-third as effectively as all-trans-retinol. In contrast, retinoic acid bound to apo-RBP almost as effectively as did retinol. Each of two isomers of retinol, 13-cis and 11,13-di-cis-retinol, bound to apo-RBP to some extent. The 13-cis isomer appeared to bind somewhat less effectively than did the 11,13-di-cis isomer. The binding of retinol to RBP is highly but not absolutely specific.  相似文献   

12.
13.
Craniosynostosis is a developmental disorder of the skull arising from premature bony fusion of cranial sutures, the sites of skull bone growth. In a recent gene microarray study, we demonstrated that retinol-binding protein 4 (RBP4) was the most highly downregulated gene in suture tissue during the pathological process of premature bony fusion. To gain insight into the function of RBP4 in cranial sutures, we analysed primary cells cultured from human cranial suture mesenchyme. These cells express RBP4 but not CRBP1, cellular retinol-binding protein 1, the typical cytoplasmic retinol storage protein. Using flow cytometry, we showed that suture mesenchymal cells express the RBP4 receptor, STRA6, on the cell surface. In a cell culture model of cranial osteogenesis, we found that RBP4 was significantly downregulated during mineralization, analogous to its decrease in pathological suture fusion. We found that cranial suture cells do not secrete detectable levels of RBP4, suggesting that it acts in a cell-autonomous manner. High-resolution confocal microscopy with a panel of antibody markers of cytoplasmic organelles demonstrated that RBP4 was present in several hundred cytoplasmic vesicles of about 300 nm in diameter which, in large part, were conspicuously distinct from the ER, the Golgi and endosomes of the endocytic pathway. We speculate that in suture mesenchymal cells, endogenous RBP4 receives retinol from STRA6 and the RBP4-retinol complex is stored in vesicles until needed for conversion to retinoic acid in the process of osteogenesis. This study extends the role of RBP4 beyond that of a serum transporter of retinol and implicates a broader role in osteogenesis.  相似文献   

14.
Lipocalins as biochemical markers of disease   总被引:5,自引:0,他引:5  
  相似文献   

15.
Apolipoprotein M (apoM) is a plasma protein associated mainly with HDL. ApoM is suggested to be important for the formation of prebeta-HDL, but its mechanism of action is unknown. Homology modeling has suggested apoM to be a lipocalin. Lipocalins share a structurally conserved beta-barrel, which in many lipocalins bind hydrophobic ligands. The aim of this study was to test the ability of apoM to bind different hydrophobic substances. ApoM was produced both in Escherichia coli and in HEK 293 cells. Characterization of both variants with electrophoretic and immunological methods suggested apoM from E. coli to be correctly folded. Intrinsic tryptophan fluorescence of both apoM variants revealed that retinol, all-trans-retinoic acid, and 9-cis-retinoic acid bound (dissociation constant = 2-3 microM), whereas other tested substances (e.g., cholesterol, vitamin K, and arachidonic acid) did not. The intrinsic fluorescence of two apoM mutants carrying single tryptophans was quenched by retinol and retinoic acid to the same extent as wild-type apoM, indicating that the environment of both tryptophans was affected by the binding. In conclusion, the binding of retinol and retinoic acid supports the hypothesis that apoM is a lipocalin. The physiological relevance of this binding has yet to be elucidated.  相似文献   

16.
Two-dimensional polyacrylamide gel electrophoresis has revealed the presence of a group of relatively acidic proteins of molecular weight about 22,000 in the uterine flushings of pseudopregnant pigs. The proteins have been purified by a combination of gel filtration chromatography and high performance anion-exchange chromatography and shown to bind both [3H] retinol and [3H]retinoic acid. At least four protein peaks that bound retinoids could be detected in the uterine secretions of a single pig. The ion-exchange procedure also allowed the retinol-free apoproteins to be separated from the holoforms that had associated ligand. Amino acid sequencing of the NH2 termini of polypeptides within three of the peaks revealed the presence of proteins with some degree of sequence identity to serum retinol-binding proteins (RBP). The most basic polypeptides showed the least similarity (about 30% identity), while the most acidic isoform analyzed shared about 70% sequence identity with the NH2 terminus of human serum RBP. Western blotting procedures employing an antiserum raised against the most basic isoforms showed that the amount of retinol-binding protein in uterine secretions increased markedly in ovariectomized animals in response to long term progesterone treatment. These proteins appear to form part of the uterine histotroph thought to be essential for nourishment of the conceptuses during pregnancy. A simple three-step procedure for purifying retinol-binding protein from pig serum is also described. The NH2-terminal sequence of this RBP is similar to that of human RBP but different from those of the uterine forms. The study suggests that a family of RBP, distinct from the serum form, is secreted by the uterine endometrium of the pig in response to progesterone.  相似文献   

17.
Lipocalins are β-barrel proteins, which share three conserved motifs in their amino acid sequence. In this study, we identified by a peptide mapping approach, a seven-amino acid sequence related to one of these motifs (motif 2) that modulates cell survival. A synthetic peptide based on an insect lipocalin displayed cytoprotective activity in serum-deprived endothelial cells and leucocytes. This activity was dependent on nitric oxide synthase. This sequence was found within several lipocalins, including apolipoprotein D, retinol binding protein, lipocalin-type prostaglandin D synthase, and many unknown proteins, suggesting that it is a sequence signature and a lipocalin conserved property.  相似文献   

18.
The lipocalins are a family of extracellular proteins that bind and transport small hydrophobic molecules. They are found in eubacteria and a great variety of eukaryotic cells, in which they play diverse physiological roles. We report here the detection of two new eukaryotic lipocalins and a phylogenetic analysis of 113 lipocalin family members performed with maximum-likelihood and parsimony methods on their amino acid sequences. Lipocalins segregate into 13 monophyletic clades, some of which are grouped in well-supported superclades. An examination of the G + C content of the bacterial lipocalin genes and the detection of four new conceptual lipocalins in other eubacterial species argue against a recent horizontal transfer as the origin of prokaryotic lipocalins. Therefore, we rooted our lipocalin tree using the clade containing the prokaryotic lipocalins. The topology of the rooted lipocalin tree is in general agreement with the currently accepted view of the organismal phylogeny of arthropods and chordates. The rooted tree allows us to assign polarity to character changes and suggests a plausible scenario for the evolution of important lipocalin properties. More recently evolved lipocalins tend to (1) show greater rates of amino acid substitutions, (2) have more flexible protein structures, (3) bind smaller hydrophobic ligands, and (4) increase the efficiency of their ligand-binding contacts. Finally, we found that the family of fatty-acid-binding proteins originated from the more derived lipocalins and therefore cannot be considered a sister group of the lipocalin family.  相似文献   

19.
Studies were conducted to explore the regulation of retinol-binding protein (RBP) metabolism in cultured primary hepatocytes from retinol-deficient rats. Newly isolated hepatocytes from retinol-deficient rats contained elevated levels (3.4-fold) of RBP, compared to hepatocytes from normal (retinol-adequate) rats. Addition of retinol to retinol-depleted hepatocytes stimulated RBP secretion by the cells in a concentration-dependent manner. Maximal stimulation of RBP secretion was seen with a retinol level of 0.3 micrograms/ml. The effect of retinol was quite rapid, and was evident by 20 minutes after addition of retinol to the medium. Stimulation of RBP secretion was only seen during the first few hours after retinol addition. The effect of retinol was specific for RBP; thus, retinol had no effect on the secretion rates of transthyretin or albumin. Addition of retinoic acid also stimulated RBP secretion by retinol-deficient hepatocytes. Addition of dexamethasone to retinol-deficient cells did not maintain the initial rate of RBP secretion. Dexamethasone also had no effect on the secretion of transthyretin or albumin by these cells. The effects of retinol and of dexamethasone seen here with retinol-depleted cells differed dramatically from effects seen in other studies with normal (retinol-adequate) hepatocytes. Thus, with normal cells, dexamethasone maintains RBP, TTR, and albumin production and secretion rates close to initial rates. Also in normal hepatocytes, with ample retinol available within the cell, addition of exogenous retinol does not appear to influence RBP secretion. In contrast, and as shown previously in intact rats, in retinol deficiency the availability of retinol specifically regulates the secretion of RBP by hepatocytes.  相似文献   

20.
Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss‐of‐function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 75–92, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号