共查询到20条相似文献,搜索用时 15 毫秒
1.
Triacontanol (TRIA) increases the dry weight and alters the metabolism of rice (Oryza sativa L.) seedlings within 10 min of application to either the shoots or roots. This activity is prevented if octacosanol (OCTA, C28 primary alcohol) is applied with the TRIA on the roots or shoots. Triacontanol activity is also stopped if the OCTA is applied at least 1 min before the TRIA on the opposite part of the seedling.Triacontanol rapidly elicits a second messenger that moves rapidly throughout the plant resulting in stimulation of growth (dry-weight increase) and water uptake. Octacosanol also produces a second messenger that inhibits TRIA activity. We have named the putative secondary messengers elicited by TRIA and OCTA, TRIM and OCTAM, respectively. The water-soluble TRIM extracted from plants treated with TRIA increases the growth of rice seedlings about 50% more than extracts from untreated plants, within 24 h of application. Both OCTAM and OCTA inhibit the activity of TRIA but not of TRIM.The TRIA messenger was isolated from rice roots within 1 min of a foliar application of TRIA. The TRIM elicited by TRIA will pass through a 4-mm column of water connecting cut rice shoots with their roots and can also be recovered from water in which cut stems of TRIA-treated plants have been immersed. Triacontanol applied to oat (Avena sativa L.) or tomato (Lycopersicon esculentum Mill.) shoots connected to rice roots by a 4-mm water column also results in the appearance of TRIM in rice roots.Abbreviations OCTA
octacosanol
- OCTAM
second messenger elicited by OCTA
- TAS
tallow alkyl sulfate
- TRIA
triacontanol
- TRIM
second messenger elicited by TRIA
Michigan Agricultural Experiment Station Journal Article No. 12001 相似文献
2.
Activities of tricarboxylic acid (TCA) cycle enzymes in seedlings of barnyard grass (Echinochloa phyllopogon (Stapf.) Koss) and rice (Oryza sativa L.) germinated under aerobic and anaerobic conditions were investigated. In E. phyllopogon, development of TCA-cycle enzyme activities during 10 d of anoxia generally paralleled those in air, although at lower rates. After 5 d, E. phyllopogon seedlings germinating under N2 exhibited 50–80% of the activity of seedlings grown in air, except for 2-oxoglutarate dehydrogenase (EC 1.2.4.2) and fumarate reductase (EC 1.3.1.6) which exhibited only 25–35% of aerobic activity. In anaerobically germinated rice, development of TCA-cycle enzyme activities also paralleled those in air except for aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.41), and 2-oxoglutarate dehydrogenase. Those enzymes did not increase in activity under anoxia. Development of maximum enzyme activities generally occurred more rapidly and persisted longer in E. phyllopogon compared to rice. The data indicate that mitochondria of E. phyllopogon function better during anaerobiosis than those of rice and this factor may contribute to the successful biochemical strategy of this weed in rice paddies throughout the world.Abbreviation TCA
tricarboxylic acid
This work was supported by U.S. Department of Agriculture Competitive Research grant No. 87-CRCR1-2595 and a Herman Frasch Foundation grant in Agricultural Chemistry to R.A.K. 相似文献
3.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR
far-red light
- FRc
continuous far-red light
- FRp
pulses of far-red light
- HIR
high-irradiance responses
- LFR
low-fluence responses
- OPHYA
transgenic rice overexpressing oat phytochrome A
- Pfr
far-red light-absorbing form of phytochrome
- phyA
phytochrome A
- R
red light
- Rc
continuous red light
- VLFR
very low-fluence responses
- WT
wildtype
We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C. 相似文献
4.
Drought and salinity are the major abiotic factors limiting productivityin rice (Oryza sativa L.). Although both generate osmoticstress, ion toxicity is an additional and important component of salinity. Tostudy the morphological and anatomical responses to those types of stress, weused in vitro grown rice seedlings. Based on an initialscreening of several non-penetrating osmotica on seedling growth, we selectedsorbitol to compare its osmotic effects during seedling development with thosegenerated by NaCl stress. At comparable levels of osmolality, the reduction inroot and leaf growth as well as their delayed development were similar for bothsaline- and osmotically-generated stress. Some changes observed in root anatomyand most of the variations in leaf anatomy features caused by the treatmentscould be ascribed to osmotic stress. However, there were evident differences inthe morphology of the root system as well as in chlorophyll levels as afunctionof the stress treatment. Furthermore, the larger size of epidermal andbulliformcells was distinctively related to saline stress. The results obtained providetools for the in vitro identification of either specificorcross-tolerant phenotypes. 相似文献
5.
Gabriel G. Limas Matilde Salinas Ignacio Moneo Stefan Fischer Brigitte Wittmann-Liebold Enrique Méndez 《Planta》1990,181(1):1-9
Ten new proteins from rice (Oryza saliva L. cv. Bahia) including four protein-synthesis inhibitors and two immunoglobulin E (IgE)-binding proteins have been isolated and characterized. These proteins as well as one previously known component, -globulin, were purified from a 0.5 M NaCl extract of rice endosperm by a new, apparently non-denaturing, isolation procedure developed for rice proteins. The method is based on extractions of this complex protein mixture with a diluted volatile salt solution and an aqueous solution of ethanol. This preliminary step results in an improvement in the separation of these proteins, thus facilitating their subsequent purification by reversed-phased high-performance liquid chromatography. These new proteins have similar relative molecular masses (Mrs) from 11000 to 17000. The purity of the proteins was analyzed by micro two-dimensional gel electrophoresis. Four of these components were found to be in-vitro protein-synthesis inhibitors in a cell-free system from rat brain. The NH2-terminal amino-acid sequences of these four inhibitors were determined from 12 to 26 cycles after direct blotting of the separated proteins from electrophoresis gels. Three of these proteins with Mrs between 16000 and 17000 showed a high degree of homology ranging from 57% to 75% but seem to be unrelated to the fourth inhibitor. In addition, the -globulin and one of the new low-molecular-weight proteins of Mr 12500 seemed to show allergenic properties since they bound IgE antibodies from the sera of hypersensitive patients. Boths proteins have blocked NH2-terminal amino acids.Abbreviations HMW
high molecular weight
- IgE
immunoglobulin E
- LMW
low molecular weight
- Mr
relative molecular mass
- PAGE
polyacrylamide gel electrophoresis
- RP-HPLC
reversed-phase high-performance liquid chromatography
- SDS
sodium dodecyl sulphate
We thank F. Soriano and F. Colillia for technical assistance, and Shirley McGrath for secretarial work. We also appreciate the cheerful assistance of the members of Instituto Nacional de Semillas, specially Mr. L. Solaices, who provided samples of rice. This work was supported by a grant from Comision Asesora de Investigación Ciéntifica y Técnica. 相似文献
6.
Physiological responses of Lactococcus lactis ML3 to alternating conditions of growth and starvation
E. R. S. Kunji T. Ubbink A. Matin B. Poolman W. N. Konings 《Archives of microbiology》1993,159(4):372-379
Lactococcus lactis species can survive periods of carbohydrate starvation for relatively long periods of time. In the first hours of starvation, however, the maximal glycolytic and arginine deiminase (ADI) pathway activities decline rapidly. The rate of decrease of the pathway activities diminishes as soon as the cells become depleted of energy-rich intermediates. Loss of glycolytic activity is associated with loss of glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase and pyruvate kinase activities. Upon addition of sugar to starved cultures these enzymatic, and thus the glycolytic, activities can be restored to 100% values. The recovery of enzymatic activities is inhibited by chloramphenicol, indicating that protein synthesis is involved. In contrast, restoration of ADI pathway activity does not require de novo synthesis of proteins. General protein degradation and synthesis have been studied in growing and starving cells using [35S]methionine-labeling of proteins and two-dimensional gel analysis. The breakdown of bulk proteins in exponentially growing cells shows first-order rate kinetics (t1/2 of approximately 5 h). Following an initial breakdown of proteins with a t1/2 of 5 h during the first hour(s) of starvation, bulk proteins are degraded very slowly in starving energy-depleted cells. The breakdown of proteins during starvation appears to be (largely) nonspecific. The rate of synthesis of proteins decreases rapidly in the first hour(s) of starvation. From the onset of starvation on at least 45 proteins are no longer synthesized. During starvation relative induction of fourteen to fifteen proteins can be observed.Abbreviations ADI
Arginine deiminase
- ATP
adenosine triphosphate
- PEP
phosphoenolpyruvate
-
membrane potential
- pH
pH gradient
- PTS
sugar phosphotransferase system
- CDM
chemically defined medium
- TCA
trichloro-acetic acid 相似文献
7.
Tomato (C3-plants) and maize (C4-plants) were grown in a nutrient solution to which triacontanol was added twice a week. After about 4 weeks the triacontanol treatment caused a significant increase in the dry weight of the tomato plants. Leaf area and dry weight measurements of tomato leaves at different stages of development showed that the largest increase in growth was obtained when triacontanol treatment was initiated before bud formation. In maize, no effect of the triacontanol treatment on dry wieght was observed. Photosynthesis was inhibited by 27% in young leaves from triacontanol-treated tomato plants and 39% in the controls, when the oxygen concentration was raised from 2% to 21%. In maize no change in photosynthesis could be observed, neither after altered oxygen concentration nor after triacontanol treatment. The difference in the response of C3- and C4-plants to triacontanol indicates that it regulates processes related to photosynthesis. 相似文献
8.
Summary The growth responses of seedlings of Amphipterygium adstringens, Caesalpinia eriostachys, and C. platyloba, species associated with undisturbed parts of the tropical deciduous forest in México, and Apoplanesia paniculata and Heliocarpus pallidus, two gap-requiring pioneer species, were determined under contrasting light conditions in a growth chamber experiment. The high (400 mol m–2 s–1) and low (80 mol m–2 s–1) light treatments correspond to the light available in a medium size gap and underneath the vegetation canopy in the deciduous forest during the rainy season, respectively. Following four destructive harvests the biomass production, relative growth rate, root/shoot ratio, specific leaf area, net assimilation rate, leaf area ratio and light dependency were determined for all species. In the high light treatment all species achieved higher relative growth rates and net assimilation rates than when growing at low light intensity. However, the two pioneer species showed the highest light dependency and were the species more affected by the low light treatment in biomass production. The two Caesalpinia species showed similar growth responses, but C. platyloba was the most shade tolerant species. Plastic adjustments in terms of the specific leaf area were more evident in the two pioneer species. 相似文献
9.
Unrolling of the second leaf of 8-day-old rice (Oryza sativa L.) seedlings was promoted by weak blue light (B), but not by red light (R). The effect of B was counteracted by irradiation with R just before or after the B. The counteracting effect of R was reversed by subsequent irradiation with far-red light but not by B, even if B was applied for 10 h. The B was effective when the region 0.5–2 cm from the tip of the leaf was irradiated. These results indicate that in rice photoreceptors for blue light located in the region 0.5–2 cm from the tip of the leaf play a key role in leaf unrolling and that a B-absorbing pigment and phytochrome participate in leaf unrolling in a closely related manner.Abbreviations B
blue light
- R
red light
- FR
far-red light
- W
white light
- D
dark
This work was presented at the Annual Meeting of the Japanese Society of Plant Physiologists on April 4, 1978, in Hiroshima 相似文献
10.
During anaerobiosis in darkness the main route for ATP production in plants is through glycolysis in combination with fermentation. We compared the organ-specific anaerobic fermentation of flooding-tolerant rice (Oryza sativa) and sensitive wheat (Triticum aestivum) seedlings. A sensitive laser-based photoacoustic trace gas detection system was used to monitor emission of ethanol and acetaldehyde by roots and shoots of intact seedlings. Dark-incubated rice seedlings released 3 times more acetaldehyde and 14 times more ethanol than wheat seedlings during anaerobiosis. Ninety percent of acetaldehyde originated from shoots of both species. In comparison to wheat shoots, the high ethanol production of rice shoots correlated with larger amounts of soluble carbohydrates, and higher activities of fermentative enzymes. After 24 h of anaerobiosis in darkness rice shoots still contained 30% of aerated ATP level, which enabled seedlings to survive this period. In contrast, ATP content declined almost to zero in wheat shoots and roots, which were irreversibly damaged after a 24-h anaerobic period. When plants were anaerobically and dark incubated for 4 h and subsequently transferred back to aeration, shoots showed a transient peak of acetaldehyde release indicating prompt re-oxidation of ethanol. Post-anoxic acetaldehyde production was lower in rice seedlings than in wheat. This observation accounts for a more effective acetaldehyde detoxification system in rice. Compared to wheat the greater tolerance of rice seedlings to transient anaerobic periods is explained by a faster fermentation rate of their shoots allowing a sufficient ATP production and an efficient suppression of toxic acetaldehyde formation in the early re-aeration period.Angelika Mustroph and Elena I. Boamfa contributed equally to the paper. 相似文献
11.
Xinping Chen Hongyu Yuan Rongzhi Chen Lili Zhu Guangcun He 《Plant Growth Regulation》2003,40(3):249-256
Triacontanol (TRIA) increased the contents of total chlorophyll (Chl), Chl a and Chl b by 25.1%, 26.1% and 22.4% respectively 4 h after treatment in rice seedlings. The minimal fluorescence (F0), the maximal fluorescence (Fm) and Fv/Fm were also higher in TRIA-treated plants. In actinic light, other Chl fluorescence parameters were measured at different photon flux densities (PFD) to construct light response curves of the quantum yield of PSII electron transport (PSII), light response curves of photochemical quenching (qp), and light response curves of non-photochemical quenching (qN), respectively. The PSII and qp declined with the increasing PFD with a higher level present in TRIA-treated plants. The qN increased with the increasing PFD with a lower level present in TRIA-treated plants. Two-dimensional gel electrophoresis indicated a protein expression difference between TRIA-treated materials and the controls at the total-soluble-protein level. Rubisco was 30% higher in TRIA-treated plants than in controls. The quantity of other proteins was unchanged in response to TRIA. These data provide biochemical and photochemical evidence for the effects of TRIA on photosynthesis. 相似文献
12.
The major endogenous gibberellin (GA) in shoots, roots and ears of the rice plant, Oryza sativa L. japonica cv. Nihonbare, was identified as GA19 by combined gas liquid chromatography-mass spectrometry (GC-MS) and GC-selected ion current monitoring (GC-SICM). Another GA present in these tissues in small quantity was tentatively identified as GA1 by GC-SICM, and GA4 may be present in the seeds (kernels) of 3rd-leaf-stage seedlings. Using GC-SICM, the GA19 content was quantified throughout the life cycle of rice plants. It was found to reach high levels (ca. 10–15 g/kg fresh weight) in 3rd-leaf seedlings, at panicle initiation (shoots), and during heading and anthesis (ears). The levels of GA19 in Oryza sativa indica cv. T-136 underwent changes closely similar to those found in Nihonbare. The growth-promoting activity in rice of exogenous GA19 is generally considerably less than that of GA1. It therefore seems possible that GA19 functions as a pool GA. The level of active GAs such as GA1 may be regulated by the rate of biosynthesis of GA19 or its metabolic conversions.Abbreviations GA(s)
gibberellin(s)
- GAn
gibberellin An
- GAn-MeTMS
trimethylsilyl ether of GAn methyl ester
- GC-MS
combined gas liquid chromatography-mass spectrometry
- GC-SICM
combined gas liquid chromatography-selected ion current monitoring
- TLC
thin-layer chromatography 相似文献
13.
14.
Picea asperata is a dominant species in the subalpine coniferous forests distributed in eastern edges of Tibetan Plateau and upper reaches of the Yangtze River. The paper mainly identified the short-term influences of experimental warming, nitrogen fertilization, and their combination on growth and physiological performances of Picea asperata seedlings. These seedlings were subjected to two levels of temperature (ambient; infrared heater warming) and two nitrogen levels (0; 25 g m−2 a−1 N) for 6 months. We used a free air temperature increase of overhead infrared heater to raise both air and soil temperature by 2.1 and 2.6°C, respectively. The temperature increment induced an obvious enhancement in biomass accumulation and the maximum net photosynthetic rate, and decreased AOS and MDA level under ambient nitrogen conditions. Whereas, negative effects of experimental warming on growth and physiology was observed under nitrogen fertilization condition. On the other hand, nitrogen fertilization significantly improved plant growth in unwarmed plots, by stimulating total biomass, maximum net photosynthetic rate (A max), antioxidant compounds, as well as reducing the content of AOS and MDA. However, in warmed plots, nitrogen addition clearly decreased A max, antioxidant compounds, and induced higher accumulation of AOS and MDA. Obviously, the beneficial effects of sole nitrogen on growth and physiology of Picea asperata seedlings could not be magnified by artificial warming. 相似文献
15.
Krishna Kaveri Das D. Panda R.K. Sarkar J.N. Reddy Abdelbagi M. Ismail 《Environmental and Experimental Botany》2009,66(3):425-434
Flash floods adversely affect rice productivity in vast areas of rainfed lowlands in South and Southeast Asia and tropical Africa. Tolerant landraces that withstand submergence for 1–2 weeks were identified; however, incorporation of tolerance into modern high-yielding varieties through conventional breeding methods has been slow because of the complexity of both the tolerance phenotype and floodwater conditions, and the ensuing discrepancies encountered upon phenotyping in different environments. Designing an effective phenotyping strategy requires a thorough understanding of the specific floodwater characteristics that most likely affect survival during flooding. We investigated the implications of floodwater temperature and light penetration, caused by artificial shading, seasonal variation, or water turbidity, for seedling survival after submergence. Three field experiments were conducted using rice genotypes contrasting in their tolerance of submergence: FR13A and Kusuma (tolerant); Gangasiuli (intermediate); Sabita, CRK-2-6 and Raghukunwar (elongating/avoiding types); and IR42 (sensitive). We tested the hypotheses that warmer floodwater decreases plant survival and that turbid water augment plant mortality by causing effects similar to those caused by shading, by reducing light penetration. Plants survive better when water is cooler, and survival decreased at about 8% per unit increase in water temperature above 26 °C. Lower intensity of light and warmer temperatures seem to reduce biomass and increase mortality under flooding. An increase in the concentrations of O2 and CO2 and a decrease in water pH did not improve survival in clear unshaded water. Turbid floodwater was more damaging to rice as plant mortality increased as the percentage of silt increased, and the effects of water turbidity cannot be explained by the reduction in light penetration alone. Even the most tolerant rice cultivar, FR13A, experienced higher mortality when flooded with turbid floodwater. Correlation studies revealed that cultivars with the capacity to maintain higher biomass, higher chlorophyll, and non-structural carbohydrate concentrations after submergence had higher survival. These findings help to understand the variation observed in submergence tolerance when screening is done under different environments. The study could have implications for designing proper screening strategies and assessing the damage submergence causes across different rice-growing regions. 相似文献
16.
Chilling of shoot cultures from Oryza sativa L. cv. Taipei 309, to 4 °C leads to conditions of oxidative stress. Tissue H2O2 was observed to increase more than fourfold by 8 d of chilling, and levels of reduced glutathione, which normally rise in growing shoot cultures at 25 °C, were considerably repressed in chilled cultures. Whilst the activity of ascorbate peroxidase in chilled shoots remained similar to the activities in control cultures at 25 °C, the most notable effects of chilling to 4 °C were the very significant loss of catalase and glutathione reductase activity. Although prior exposure of shoot cultures to abscisic acid (ABA) at 25 °C increased levels of catalase activity, such increased levels were not sustained when the pre-treated cultures were placed at 4 °C. Moreover such pre-treatment with ABA did not increase the subsequent ability of shoot cultures to grow at 4 °C.Abbreviations GSH
reduced glutathione
- GSSG
oxidised glutathione
- ABA
cis-abscisic acid
This work is supported by a grant from the Biotechnology and Biological Sciences Research Council. 相似文献
17.
Summary We present a method for quantifying the growth advantage, if any, that results from the plasticity of plant traits in response to growth in high vs. low resource levels. The method, which uses two phenotypes and two resource levels, quantifies the average advantage that a phenotype has, in its own set of conditions, over the other phenotype. The method is applied to the growth of two phenotypes of Abutilon theophrasti, induced by high and low light intensity, in response to two levels of incident light intensity. We calculated the growth advantage first using relative growth rate, and second using whole-plant photosynthetic assimilation rate, as the response variable. Then we used the photosynthetic responses to changes in light intensity to calculate changes in growth rates of each phenotype when exposed to a change in light conditions. These three quantifications of growth advantage broadly agree with one another. Despite the great plasticity of its traits induced by growth in high vs. low light intensity, whole-plant plasticity did not allow Abutilon theophrasti to exhibit a significant growth advantage under these conditions. Indeed, the relative growth rate of the low light phenotype greatly exceeded that of the high light phenotype in high incident light conditions. This may have resulted from the higher leaf area ratio of the low light phenotype. Furthermore, the high light phenotype had significantly greater transpiration rate in both light conditions. For these reasons we suggest that light-induced plasticity of traits in Abutilon theophrasti may confer advantage in response to the variation in vapor pressure deficit that is associated with variation in light intensity. Light-induced plasticity may also be advantageous because under high incident light conditions the high-light phenotype has greater reproductive allocation than the low-light phenotype. 相似文献
18.
Recent research emphasis on the ecology of Pfiesteria spp. (Dinophyceae) has led to recognition of several morphologically similar heterotrophic dinoflagellates that often co-occur with Pfiesteria spp. in estuaries along the United States Atlantic coast. These include cryptoperidiniopsoid dinoflagellates, which resemble Pfiesteria spp. in having complex life cycles that include zoospores capable of kleptoplastidy. To examine and compare the role of kleptoplastidy in Cryptoperidiniopsis sp. and Pfiesteria piscicida, we tested the effects of irradiance on growth under prey-saturated (Storeatula major, Cryptophyceae) conditions. Growth of Cryptoperidiniopsis was strongly influenced by light intensity while no major effects were observed in P. piscicida. In Cryptoperidiniopsis, highest cell numbers and specific growth rates, but lowest specific cryptophyte consumption rates, were found at the highest light intensity tested (100 μmol photons m−2 s−1). A growth model was developed and used to estimate that the average half-life of chloroplasts ingested by Cryptoperidiniopsis decreased 3.4-fold from 12.6 h at high light to 3.7 h in the dark. These results show that light strongly enhances specific growth rate and growth efficiency of Cryptoperidiniopsis feeding on cryptophytes, and suggest that retained kleptochloroplasts may play a quantitatively significant role in carbon and energy metabolism of this organism. Differences in the effects of light between Cryptoperidiniopsis and P. piscicida may reflect different nutritional strategies, and allow these closely related dinoflagellates to occupy different niches and co-exist. 相似文献
19.
The effects of different light regimes on the survival, growth and morphology ofQuercus serrata seedlings were studied in canopies ofMiscanthus sinensis. The seedlings of various ages (0–3 yr) were grown in three light regimes: under a denseM. sinensis canopy (TG plot) receiving 2.5%–8.7% of full sunlight, under a relatively sparse canopy (SG plot) receiving 3.8%–16.1% of
light and in an adjacent open site (NG plot). There was a little difference in the survival ofQ. serrata seedlings among the three plots. Height and diameter of stem and total leaf area of the seedlings were significantly lower
in the shadier plots. However, the first (bottom) flush of the stem was significantly longer in the TG plot than in the NG
and SG plots. Total dry weights of individual 1- and 2-yr-oldQ. serrata seedlings in the TG plot were reduced to about one-twelfth of those in the NG plot. Although the relative proportion in dry
weight of each organ did not differ significantly among the plots, leaf area ratio, specific leaf area and stem height per
unit dry weight were significantly higher in shadier plots. The leaf area per unit stem height was increased considerably
in the sunnier plots. 相似文献
20.
In the green unicellular alga Chlamydomonas eugametos, cellular division is readily synchronized by light/dark cycles. Under these conditions, light initiates photosynthetic growth in daughter cells and begins the G1 phase. Genes whose expression is regulated upon illumination are likely to be important mechanisms controlling cell proliferation. To identify some of those genes, two cDNA libraries were prepared with poly(A)+ extracted from cells either stimulated with light for 1 h or held in darkness (quiescent cells) during the same period. To restrict our analysis to those genes that are part of the primary response, cells were incubated in presence of cycloheximide. Differential screening of approximately 40 000 clones in each library revealed 44 clones which hybridize preferentially with a [32P] cDNA probe derived from RNA of light-stimulated cells and 15 clones which react selectively with a [32P] cDNA probe synthesized from poly(A)+ RNA of quiescent cells. Cross-hybridization of these clones identified 4 independent sequences in the light-induced (LI) collection and 2 in the uninduced (LR) library. Four of these cDNAs correspond to mRNAs that are positively or negatively regulated upon activation of photosynthesis. One clone represents a mRNA that accumulates transitorily at both transitions. Finally, LI818 cDNA identifies a new chlorophyll a/b-binding (cab) gene family whose mRNA accumulation is controlled by light and a circadian oscillator. The endogenous timing system controls LI818 mRNA accumulation so that it precedes the onset of illumination by a few hours. On the other hand, light affects LI818 mRNA levels independently of active photosynthesis. 相似文献