共查询到20条相似文献,搜索用时 15 毫秒
1.
Warfield KL Olinger G Deal EM Swenson DL Bailey M Negley DL Hart MK Bavari S 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(2):1184-1191
Ebola virus (EBOV)-like particles (eVLP), composed of the EBOV glycoprotein and matrix viral protein (VP)40 with a lipid membrane, are a highly efficacious method of immunization against EBOV infection. The exact requirements for immunity against EBOV infection are poorly defined at this time. The goal of this work was to determine the requirements for EBOV immunity following eVLP vaccination. Vaccination of BALB/c or C57BL/6 mice with eVLPs in conjunction with QS-21 adjuvant resulted in mixed IgG subclass responses, a Th1-like memory cytokine response, and protection from lethal EBOV challenge. Further, this vaccination schedule led to the generation of both CD4(+) and CD8(+) IFN-gamma(+) T cells recognizing specific peptides within glycoprotein and VP40. The transfer of both serum and splenocytes, but not serum or splenocytes alone, from eVLP-vaccinated mice conferred protection against lethal EBOV infection in these studies. B cells were required for eVLP-mediated immunity to EBOV because B cell-deficient mice vaccinated with eVLPs were not protected from lethal EBOV challenge. We also found that CD8(+), but not CD4(+), T cells are absolutely required for eVLP-mediated protection against EBOV infection. Further, eVLP-induced protective mechanisms were perforin-independent, but IFN-gamma-dependent. Taken together, both EBOV-specific humoral and cytotoxic CD8(+) T cell responses are critical to mediate protection against filoviruses following eVLP vaccination. 相似文献
2.
Dynamics of CD8+ T cell responses during acute and chronic lymphocytic choriomeningitis virus infection 总被引:1,自引:0,他引:1
Althaus CL Ganusov VV De Boer RJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(5):2944-2951
Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories. 相似文献
3.
Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection 总被引:2,自引:0,他引:2
De Boer RJ Homann D Perelson AS 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(8):3928-3935
We fit a mathematical model to data characterizing the primary cellular immune response to lymphocytic choriomeningitis virus. The data enumerate the specific CD8(+) T cell response to six MHC class I-restricted epitopes and the specific CD4(+) T cell responses to two MHC class II-restricted epitopes. The peak of the response occurs around day 8 for CD8(+) T cells and around day 9 for CD4(+) T cells. By fitting a model to the data, we characterize the kinetic differences between CD4(+) and CD8(+) T cell responses and among the immunodominant and subdominant responses to the various epitopes. CD8(+) T cell responses have faster kinetics in almost every aspect of the response. For CD8(+) and CD4(+) T cells, the doubling time during the initial expansion phase is 8 and 11 h, respectively. The half-life during the contraction phase following the peak of the response is 41 h and 3 days, respectively. CD4(+) responses are even slower because their contraction phase appears to be biphasic, approaching a 35-day half-life 8 days after the peak of the response. The half-life during the memory phase is 500 days for the CD4(+) T cell responses and appears to be lifelong for the six CD8(+) T cell responses. Comparing the responses between the various epitopes, we find that immunodominant responses have an earlier and/or larger recruitment of precursors cells before the expansion phase and/or have a faster proliferation rate during the expansion phase. 相似文献
4.
Kemball CC Lee ED Vezys V Pearson TC Larsen CP Lukacher AE 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(12):7950-7960
Control of persistently infecting viruses requires that antiviral CD8(+) T cells sustain their numbers and effector function. In this study, we monitored epitope-specific CD8(+) T cells during acute and persistent phases of infection by polyoma virus, a mouse pathogen that is capable of potent oncogenicity. We identified several novel polyoma-specific CD8(+) T cell epitopes in C57BL/6 mice, a mouse strain highly resistant to polyoma virus-induced tumors. Each of these epitopes is derived from the viral T proteins, nonstructural proteins produced by both productively and nonproductively (and potentially transformed) infected cells. In contrast to CD8(+) T cell responses described in other microbial infection mouse models, we found substantial variability between epitope-specific CD8(+) T cell responses in their kinetics of expansion and contraction during acute infection, maintenance during persistent infection, as well as their expression of cytokine receptors and cytokine profiles. This epitope-dependent variability also extended to differences in maturation of functional avidity from acute to persistent infection, despite a narrowing in TCR repertoire across all three specificities. Using a novel minimal myeloablation-bone marrow chimera approach, we visualized priming of epitope-specific CD8(+) T cells during persistent virus infection. Interestingly, epitope-specific CD8(+) T cells differed in CD62L-selectin expression profiles when primed in acute or persistent phases of infection, indicating that the context of priming affects CD8(+) T cell heterogeneity. In summary, persistent polyoma virus infection both quantitatively and qualitatively shapes the antiviral CD8(+) T cell response. 相似文献
5.
Atherly LO Brehm MA Welsh RM Berg LJ 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(3):1571-1581
Itk and Rlk are members of the Tec kinase family of nonreceptor protein tyrosine kinases that are expressed in T cells, NK cells, and mast cells. These proteins are involved in the regulation of signaling processes downstream of the TCR in CD4(+) T cells, particularly in the phosphorylation of phospholipase C-gamma1 after TCR activation; furthermore, both Itk and Rlk are important in CD4(+) T cell development, differentiation, function, and homeostasis. However, few studies have addressed the roles of these kinases in CD8(+) T cell signaling and function. Using Itk(-/-) and Itk(-/-)Rlk(-/-) mice, we examined the roles of these Tec family kinases in CD8(+) T cells, both in vitro and in vivo. These studies demonstrate that the loss of Itk and Rlk impairs TCR-dependent signaling, causing defects in phospholipase C-gamma1, p38, and ERK activation as well as defects in calcium flux and cytokine production in vitro and expansion and effector cytokine production by CD8(+) T cells in response to viral infection. These defects cannot be rescued by providing virus-specific CD4(+) T cell help, thereby substantiating the important role of Tec kinases in CD8(+) T cell signaling. 相似文献
6.
O'Connor SL Becker EA Weinfurter JT Chin EN Budde ML Gostick E Correll M Gleicher M Hughes AL Price DA Friedrich TC O'Connor DH 《Journal of virology》2012,86(1):605-609
CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386-394GW9, Nef103-111RM9, and Rev59-68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59-68SP10 was associated with delayed accumulation of variants in Gag386-394GW9 but had no effect on variation within Nef103-111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection. 相似文献
7.
Crawford TQ Ndhlovu LC Tan A Carvidi A Hecht FM Sinclair E Barbour JD 《Journal of virology》2011,85(23):12343-12350
Mitogen-activated protein kinase (MAPK) signaling pathways are dynamic and sensitive regulators of T cell function and differentiation. Altered MAPK signaling has been associated with the inflammatory and autoimmune diseases lupus and arthritis and with some pathogenic viral infections. HIV-1 infection is characterized by chronic immune inflammation, aberrantly heightened CD8+ T cell activation levels, and altered T cell function. The relationship between MAPK pathway function, HIV-1-induced activation (CD38 and HLA-DR), and exhaustion (Tim-3) markers in circulating CD8+ T cells remains unknown. Phosphorylation of the MAPK effector proteins ERK and p38 was examined by “phosflow” flow cytometry in 79 recently HIV-1-infected, antiretroviral-treatment-naïve adults and 21 risk-matched HIV-1-negative controls. We identified a subset of CD8+ T cells refractory to phorbol 12-myristate 13-acetate plus ionomycin-induced ERK1/2 phosphorylation (referred to as p-ERK1/2-refractory cells) that was greatly expanded in HIV-1-infected adults. The CD8+ p-ERK1/2-refractory cells were highly activated (CD38+ HLA-DR+) but not exhausted (Tim-3 negative), tended to have low CD8 expression, and were enriched in intermediate and late transitional memory states of differentiation (CD45RA− CD28− CD27+/−). Targeting MAPK pathways to restore ERK1/2 signaling may normalize immune inflammation levels and restore CD8+ T cell function during HIV-1 infection. 相似文献
8.
Cellular immune responses play an important role in the control of HIV replication. Although clear evidence exists on its influence during acute HIV infection, its role during the chronic phase of the disease remains controversial. This review describes the cellular immune responses elicited against HIV mediated by CD8(+) T lymphocytes, and the mechanisms by which these cells are inefficient to completely control HIV replication and halt disease progression. The role of escape mutations as one of the most relevant mechanisms HIV has developed to evade host cellular immune responses is highlighted. 相似文献
9.
Nussbaum AK Rodriguez-Carreno MP Benning N Botten J Whitton JL 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(2):1153-1160
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere. 相似文献
10.
The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of ‘combinatorial encoding’ enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring. 相似文献
11.
Riou C Ganusov VV Campion S Mlotshwa M Liu MK Whale VE Goonetilleke N Borrow P Ferrari G Betts MR Haynes BF McMichael AJ Gray CM 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(5):2198-2206
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4(+) and CD8(+) T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4(+) and CD8(+) T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-γ(+)CD4(+) T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-γ(+)CD8(+) T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-α-expressing cells within the IFN-γ(+)CD4(+) T cell population increased (p = 0.001) over time, whereas TNF-α-expressing cells within IFN-γ(+)CD8(+) T cells declined (p = 0.005). Both Gag-responsive CD4(+) and CD8(+) T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67(+)CD4(+) T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8(+) T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4(+) and CD8(+) T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection. 相似文献
12.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation. 相似文献
13.
Gervassi AL Probst P Stamm WE Marrazzo J Grabstein KH Alderson MR 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(8):4278-4286
CD8(+) T cells are a key immune component for the eradication of many intracellular pathogens. This study aims to characterize the human CD8(+) T cell response to naturally processed chlamydial Ags in individuals exposed to the intracellular pathogen Chlamydia trachomatis. By using C. trachomatis-infected autologous dendritic cells (DCs) as stimulators, Chlamydia-reactive CD8(+) T cell responses were detected in all 10 individuals tested. The majority of the Chlamydia-reactive CD8(+) T cells were non-MHC class Ia restricted in all three of the individuals tested. From one donor, three non-class Ia-restricted and two class Ia-restricted Chlamydia-specific CD8(+) T cells were cloned and characterized further. All five T cell clones secreted IFN-gamma in response to autologous DCs infected with viable Chlamydia, but not with DCs pulsed with inactivated chlamydial elementary bodies. MHC class Ia-restricted and non-class Ia-restricted responses were inhibited by DC treatment with a proteasomal inhibitor and an endoplasmic reticulum-Golgi transport inhibitor, suggesting that these T cells recognize a peptide Ag translocated to the host cell cytosol during infection that is processed via the classical class Ia Ag-processing pathway. Even though both restricted and nonrestricted CD8(+) T cells produced IFN-gamma in response to Chlamydia-infected fibroblasts, only the non-class Ia-restricted cells were lytic for these targets. The class Ia-restricted CTLs, however, were capable of cytolysis as measured by redirected killing. Collectively, these data demonstrate that both class Ia-restricted and non-classically restricted CD8(+) T cells are elicited in C. trachomatis-exposed individuals. Their role in host immunity remains to be elucidated. 相似文献
14.
The human gamma-herpesvirus Epstein-Barr virus establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignancies efficiently and remain free of EBV+ tumors. It is commonly accepted that lymphoblastoid cells, expressing all EBV latent antigens, are targeted by the immune system and cause tumors only in immune-suppressed individuals. However, immune control of EBV associated malignancies which express only three or one EBV latent antigen is less obvious. Recent studies have addressed the pattern of EBV latent infection in healthy EBV carriers and the identity of EBV derived target antigens for CD4+ T cells. The results suggest that immune surveillance also extends to tumors, which have down-regulated most EBV latent antigens and therefore escape EBV specific immune recognition at least in part. EBV specific immunity that targets these tumors in healthy EBV carriers seems to fail specifically during the development of Hodgkin's disease, nasopharyngeal carcinoma and Burkitt's lymphoma. These three EBV+ tumors appear to subdue EBV immunity against the remaining EBV latent antigens in different ways or profit from the effect of other pathogens on EBV specific immune responses, when they develop in otherwise immune competent individuals. While immune control and immune escape of these so-called spontaneously arising EBV associated malignancies is just beginning to be understood, immune control of persisting EBV infection can serve as a model for tumor immune surveillance in general. 相似文献
15.
Pewe LL Netland JM Heard SB Perlman S 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(5):3151-3156
We measured CD8 T cell clonotypic diversity to three epitopes recognized in C57BL/6 mice infected with mouse hepatitis virus, strain JHM, or lymphocytic choriomeningitis virus. We isolated epitope-specific T cells with an IFN-gamma capture assay or MHC class I/peptide tetramers and identified different clonotypes by Vbeta chain sequence analysis. In agreement with our previous results, the number of different clonotypes responding to all three epitopes fit a log-series distribution. From these distributions, we estimated that >1000 different clonotypes responded to each immunodominant CD8 T cell epitope; the response to a subdominant CD8 T cell epitope was modestly less diverse. These results suggest that T cell response diversity is greater by 1-2 orders of magnitude than predicted previously. 相似文献
16.
Gupta M Greer P Mahanty S Shieh WJ Zaki SR Ahmed R Rollin PE 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(7):4198-4202
CD8 T cells have been shown to play an important role in the clearance and protection against fatal Ebola virus infection. In this study, we examined the mechanisms by which CD8 T cells mediate this protection. Our data demonstrate that all normal mice infected s.c. with a mouse-adapted Ebola virus survived the infection, as did 100% of mice deficient in Fas and 90% of those deficient in IFN-gamma. In contrast, perforin-deficient mice uniformly died after s.c. challenge. Perforin-deficient mice failed to clear viral infection even though they developed normal levels of neutralizing anti-Ebola Abs and 5- to 10-fold higher levels of IFN-gamma than control mice. Using MHC class I tetramers, we have also shown that perforin-deficient mice have 2- to 4-fold higher numbers of Ebola-specific CD8s than control mice. These findings suggest that the clearance of Ebola virus is perforin-dependent and provide an additional example showing that this basic immunologic mechanism is not limited to the clearance of noncytopathic viruses. 相似文献
17.
Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection 总被引:6,自引:0,他引:6
Shedlock DJ Whitmire JK Tan J MacDonald AS Ahmed R Shen H 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(4):2053-2063
CD4 T cells are known to assist the CD8 T cell response by activating APC via CD40-CD40 ligand (L) interactions. However, recent data have shown that bacterial products can directly activate APC through Toll-like receptors, resulting in up-regulation of costimulatory molecules necessary for the efficient priming of naive T cells. It remains unclear what role CD4 T cell help and various costimulation pathways play in the development of CD8 T cell responses during bacterial infection. In this study, we examined these questions using an intracellular bacterium, Listeria monocytogenes, as a model of infection. In CD4 T cell-depleted, CD4(-/-), and MHC class II(-/-) mice, L. monocytogenes infection induced CD8 T cell activation and primed epitope-specific CD8 T cells to levels commensurate with those in normal C57BL/6 mice. Furthermore, these epitope-specific CD8 T cells established long-term memory in CD4(-/-) mice that was capable of mounting a protective recall response. In vitro analysis showed that L. monocytogenes directly stimulated the activation and maturation of murine dendritic cells. The CD8 T cell response to L. monocytogenes was normal in CD40L(-/-) mice but defective in CD28(-/-) and CD137L(-/-) mice. These data show that in situations where infectious agents or immunogens can directly activate APC, CD8 T cell responses are less dependent on CD4 T cell help via the CD40-CD40L pathway but involve costimulation through CD137-CD137L and B7-CD28 interactions. 相似文献
18.
Manion M Rodriguez B Medvik K Hardy G Harding CV Schooley RT Pollard R Asmuth D Murphy R Barker E Brady KE Landay A Funderburg N Sieg SF Lederman MM 《PloS one》2012,7(1):e30306
Background
Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation.Methods
To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment.Results
The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006). These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy). As plasma HIV levels fell with interferon therapy, this was correlated with a “paradoxical” increase in CD8+ T cell activation (p<0.001).Conclusion
Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection. 相似文献19.
Cockburn IA Chakravarty S Overstreet MG García-Sastre A Zavala F 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(1):64-71
Antimicrobial memory CD8+ T cell responses are not readily expanded by either repeated infections or immunizations. This is a major obstacle to the development of T cell vaccines. Prime-boost immunization with heterologous microbes sharing the same CD8+ epitope can induce a large expansion of the CD8+ response; however, different vectors vary greatly in their ability to boost for reasons that are poorly understood. To investigate how efficient memory T cell expansion can occur, we evaluated immune regulatory events and Ag presentation after secondary immunization with strong and weak boosting vectors. We found that dendritic cells were essential for T cell boosting and that Ag presentation by these cells was regulated by cognate memory CD8+ T cells. When weak boosting vectors were used for secondary immunization, pre-established CD8+ T cells were able to effectively curtail Ag presentation, resulting in limited CD8+ T cell expansion. In contrast, a strong boosting vector, vaccinia virus, induced highly efficient Ag presentation that overcame regulation by cognate T cells and induced large numbers of memory CD8+ T cells to expand. Thus, efficient targeting of Ag to dendritic cells in the face of cognate immunity is an important requirement for T cell expansion. 相似文献
20.
Recent studies have shown that CD4(+) T cell help is required for the generation of memory CD8(+) T cells that can proliferate and differentiate into effector cells on Ag restimulation. The importance of help for primary CD8(+) T cell responses remains controversial. It has been suggested that help is not required for the initial proliferation and differentiation of CD8(+) T cells in vivo and that classical models of helper-dependent responses describe impaired secondary responses to Ag in vitro. We have measured primary CD8(+) T cell responses to peptide-pulsed dendritic cells in mice by cytokine ELISPOT and tetramer staining. No responses were detected in the absence of help, either when normal dendritic cells were injected into MHC II-deficient mice or when MHC II-deficient dendritic cells were injected into normal mice. Thus, the primary in vivo CD8(+) T cell response depends absolutely on help from CD4(+) T cells in our experimental system. 相似文献