首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.  相似文献   

2.
Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.  相似文献   

3.
4.
Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.

To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators—including inorganic ions, antibiotics, and antibiotic resistance genes—were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 μg/L.

Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes—tet(M), tet(O), tet(Q), and tet(W)—were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period.  相似文献   

5.
Manuring of arable soils may stimulate the spread of resistance genes by introduction of resistant populations and antibiotics. We investigated effects of pig manure and sulfadiazine (SDZ) on bacterial communities in soil microcosms. A silt loam and a loamy sand were mixed with manure containing SDZ (10 or 100 mg per kilogram of soil), and compared with untreated soil and manured soil without SDZ over a 2-month period. In both soils, manure and SDZ positively affected the quotients of total and SDZ-resistant culturable bacteria [most probable number (MPN)], and transfer frequencies of plasmids conferring SDZ resistance in filter matings of soil bacteria and an Escherichia coli recipient. Detection of sulfonamide resistance genes sul1, sul2 and sul3 in community DNA by polymerase chain reaction (PCR) and hybridization revealed a high prevalence of sul1 in manure and manured soils, while sul2 was mainly found in the loamy sand treated with manure and high SDZ amounts, and sul3 was not detected. By PCR quantification of sul1 and bacterial rrn genes, a transient effect of manure alone and a long-term effect of SDZ plus manure on absolute and relative sul1 abundance in soil was shown. The dynamics in soil of class 1 integrons, which are typically associated with sul1, was analysed by amplification of the gene cassette region. Integrons introduced by manure established in both soils. Soil type and SDZ affected the composition of integrons. The synergistic effects of manure and SDZ were still detectable after 2 months. The results suggest that manure from treated pigs enhances spread of antibiotic resistances in soil bacterial communities.  相似文献   

6.
Aims: In this study, mechanisms of antimicrobial resistance and genetic relatedness among resistant enterococci from dogs and cats in the United States were determined. Methods and Results: Enterococci resistant to chloramphenicol, ciprofloxacin, erythromycin, gentamicin, kanamycin, streptomycin, lincomycin, quinupristin/dalfopristin and tetracycline were screened for the presence of 15 antimicrobial resistance genes. Five tetracycline resistance genes [tet(M), tet(O), tet(L), tet(S) and tet(U)] were detected with tet(M) accounting for approx. 60% (130/216) of tetracycline resistance; erm(B) was also widely distributed among 96% (43/45) of the erythromycin‐resistant enterococci. Five aminoglycoside resistance genes were also detected among the kanamycin‐resistant isolates with the majority of isolates (25/36; 69%) containing aph(3′)‐IIIa. The bifunctional aminoglycoside resistance gene, aac(6′)‐Ie‐aph(2″)‐Ia, was detected in gentamicin‐resistant isolates and ant(6)‐Ia in streptomycin‐resistant isolates. The most common gene combination among enterococci from dogs (n = 11) was erm(B), aac(6′)‐Ie‐aph(2″)‐Ia, aph(3′)‐IIIa, tet(M), while tet(O), tet(L) were most common among cats (n = 18). Using pulsed‐field gel electrophoresis (PFGE), isolates clustered according to enterococcal species, source and antimicrobial gene content and indistinguishable patterns were observed for some isolates from dogs and cats. Conclusion: Enterococci from dogs and cats may be a source of antimicrobial resistance genes. Significance and Impact of the Study: Dogs and cats may act as reservoirs of antimicrobial resistance genes that can be transferred from pets to people. Although host‐specific ecovars of enterococcal species have been described, identical PFGE patterns suggest that enterococcal strains may be exchanged between these two animal species.  相似文献   

7.
Phylogenetic analysis of tetracycline resistance genes, which confer resistance due to the efflux of tetracycline from the cell catalyzed by drug:H+ antiport and share a common structure with 12 transmembrane segments (12-TMS), suggested the monophyletic origin of these genes. With a high degree of confidence, this tet subcluster unifies 11 genes encoding tet efflux pumps and includes tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(Y), tet(Z), and tet(30). Phylogeny-aided alignments were used to design a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources. After rigorous validation with the characterized control tet templates, this primer set was used to determine the genotype of the corresponding tetracycline resistance genes in total DNA of swine feed and feces and in the lagoons and groundwater underlying two large swine production facilities known to be impacted by waste seepage. The compounded tet fingerprint of animal feed was found to be tetCDEHZ, while the corresponding fingerprint of total intestinal microbiota was tetBCGHYZ. Interestingly, the tet fingerprints in geographically distant waste lagoons were identical (tetBCEHYZ) and were similar to the fecal fingerprint at the third location mentioned above. Despite the sporadic detection of chlortetracycline in waste lagoons, no auxiliary diversity of tet genes in comparison with the fecal diversity could be detected, suggesting that the tet pool is generated mainly in the gut of tetracycline-fed animals, with a negligible contribution from selection imposed by tetracycline that is released into the environment. The tet efflux genes were found to be percolating into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. With yet another family of tet genes, this study confirmed our earlier findings that the antibiotic resistance gene pool generated in animal production systems may be mobile and persistent in the environment with the potential to enter the food chain.  相似文献   

8.
The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.  相似文献   

9.
Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module ( rep and oriV ) of other descent. The plasmids differed in composition of the 27.0–28.3 kbp accessory region, each of which carried IS CR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil.  相似文献   

10.
The use of antimicrobials in food animal production leads to the development of antimicrobial resistance (AMR), and animal manure constitutes the largest reservoir of such AMR. In previous studies, composted swine manure was found to contain substantially lower abundance of AMR genes that encode resistance to tetracyclines (tet genes) and macrolide–lincosamide–streptogramin B (MLSB) superfamily (erm genes), than manures that were treated by lagoons or biofilters. In this study, temporal changes in AMR carried by both cultivated and uncultivated bacteria present in swine manure during simulated composting and lagoon storage were analyzed. Treatments were designed to simulate the environmental conditions of composting (55°C with modest aeration) and lagoon storage (ambient temperature with modest aeration). As determined by selective plate counting, over a 48-day period, cultivated aerobic heterotrophic erythromycin-resistant bacteria and tetracycline-resistant bacteria decreased by more than 4 and 7 logs, respectively, in the simulated composting treatment while only 1 to 2 logs for both resistant bacterial groups in the simulated lagoon treatment. Among six classes each of erm and tet genes quantified by class-specific real-time PCR assays, the abundance of erm(A), erm(C), erm(F), erm(T), erm(X), tet(G), tet(M), tet(O), tet(T), and tet(W) declined marginally during the first 17 days, but dramatically thereafter within 31 days of the composting treatment. No appreciable reduction of any of the erm or tet genes analyzed was observed during the simulated lagoon treatment. Correlation analysis showed that most of the AMR gene classes had similar persistence pattern over the course of the treatments, though not all AMR genes were destructed at the same rate during the treatments.  相似文献   

11.
Animal manure from modern animal agriculture constitutes the single largest source of antibiotic resistance (AR) owing to the use of large quantities of antibiotics. After animal manure enters the environment, the AR disseminates into the environment and can pose a potentially serious threat to the health and well-being of both humans and animals. In this study, we evaluated the efficiency of three different on-farm waste treatment systems in reducing AR. Three classes of erythromycin resistance genes (erm) genes (B, F, and X) conferring resistances to macrolide–lincosamides–streptogramin B (MLSB) and one class of tetracycline resistance genes (tet) gene (G) conferring resistance to tetracyclines were used as models. Real-time polymerase chain reaction assays were used to determine the reservoir sizes of these AR genes present in the entire microbiome. These classes of AR genes varied considerably in abundance, with erm(B) being more predominant than erm(F), erm(X), and tet(G). These AR genes also varied in persistence in different waste treatment systems. Aerobic biofiltration reduced erm(X) more effectively than other AR genes, while mesophilic anaerobic digestion and lagoon storage did not appreciably reduce any of these AR genes. Unlike chemical pollutants, some AR genes could increase after reduction in a preceding stage of the treatment processes. Season might also affect the persistence of AR. These results indicate that AR arising from swine-feeding operations can survive typical swine waste treatment processes and thus treatments that are more effective in destructing AR on farms are required.  相似文献   

12.
In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion.  相似文献   

13.
14.
To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tcr) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tcr genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tcr genes was quantified by real-time quantitative PCR. To confirm the Tcr gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tcr genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tcr genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool.  相似文献   

15.
A total of 30 Megasphaera elsdenii strains, selectively isolated from the feces of organically raised swine by using Me109 M medium, and one bovine strain were analyzed for tetracycline resistance genotypic and phenotypic traits. Tetracycline-resistant strains carried tet(O), tet(W), or a tet gene mosaic of tet(O) and tet(W). M. elsdenii strains carrying tet(OWO) genes exhibited the highest tetracycline MICs (128 to >256 μg/ml), suggesting that tet(O)-tet(W) mosaic genes provide the selective advantage of greater tetracycline resistance for this species. Seven tet genotypes are now known for M. elsdenii, an archetype commensal anaerobe and model for tet gene evolution in the mammalian intestinal tract.  相似文献   

16.
Dang H  Ren J  Song L  Sun S  An L 《Microbial ecology》2008,55(2):237-246
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)–(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Aims: Microbiological and molecular analysis of antibiotic resistance in Gram‐positive cocci derived from the Italian PDO (Protected Designation of Origin) dairy food product Mozzarella di Bufala Campana. Methods and Results: One hundred and seven coccal colonies were assigned to Enterococcus faecalis, Lactococcus lactis and Streptococcus bovis genera by ARDRA analysis (amplified ribosomal DNA restriction analysis). Among them, 16 Ent. faecalis, 26 L. lactis and 39 Strep. bovis displayed high minimum inhibitory concentration (MIC) values for tetracycline, while 17 L. lactis showed high MIC values for both tetracycline and erythromycin. Strain typing and molecular analysis of the phenotypically resistant isolates demonstrated the presence of the tet(M) gene in the tetracycline‐resistant strains and of tet(S) and erm(B) in the double‐resistant strains. Southern blot analysis revealed plasmid localization of L. lactis tet(M), as well as of the erm(B) and tet(S) genes. Genetic linkage of erm(B) and tet(S) was also demonstrated by PCR amplification. Conjugation experiments demonstrated horizontal transfer to Ent. faecalis strain JH2‐2 only for the plasmid‐borne L. lactis tet(M) gene. Conclusions: We characterized tetracycline‐and erythromycin‐resistance genes in coccal species, representing the fermenting microflora of a typical Italian dairy product. Significance and Impact of the Study: These results are of particular relevance from the food safety viewpoint, especially in the light of the potential risk of horizontal transfer of antibiotic‐resistance genes among foodborne commensal bacteria.  相似文献   

18.
The prevalence of ten antibiotic resistance genes (ARGs) was evaluated in a total of 616 Escherichia coli isolates from swine manure, swine lagoon effluent, and from soils that received lagoon effluent on a commercial swine farm site in Sampson County, North Carolina (USA). Isolates with ARGs coding for streptomycin/spectinomycin (aadA/strA and strB), tetracycline (tetA and tetB), and sulfonamide (sul1) occurred most frequently (60.6–91.3%). The occurrence of E. coli isolates that carried aadA, tetA, tetB, and tetC genes was significantly more frequent in soil samples (34.097.2%) than in isolates from lagoon samples (20.9–90.6%). Furthermore, the frequency of isolates that contain genes coding for aadA and tetB was significantly greater in soil samples (82.6–97.2%) when compared to swine manure (16.8–86.1%). Isolates from the lagoon that carried tetA, tetC, and sul3 genes were significantly more prevalent during spring (63.3–96.7%) than during winter (13.1–67.8%). The prevalence of isolates from the lagoon that possessed the strA, strB, and sul1 resistance genes was significantly more frequent during the summer (90.0–100%) than during spring (66.6–80.0%). The data suggest that conditions in the lagoon, soil, and manure may have an impact on the occurrence of E. coli isolates with specific ARGs. Seasonal variables seem to impact the recovery isolates with ARGs; however, ARG distribution may be associated with mobile genetic elements or a reflection of the initial numbers of resistant isolates shed by the animals.  相似文献   

19.
The susceptibility toward antibiotics was determined by disc and MIC methods in Lactobacillus and, for comparison, in Escherichia coli strains isolated from cloacal swabs of broiler chickens derived from various farms in Slovakia. The occurrence of acquired tetracycline resistance in E. coli and lactobacilli isolated from the same sample was similar. The presence of tet(M), tet(S), tet(L) and ermB genes was demonstrated in lactobacilli while the tet(M) gene was not detected in E. coli.  相似文献   

20.
The presence of selected tetracycline resistance (TcR) genes was studied in different Greek seawater habitats, originated from wastewater treatment facilities, fishfarm, and coastal environments. The methods employed included assessment of the presence of twelve gene clusters by PCR, followed by hybridization with specific probes, in habitat extracted DNA, TcR bacteria, and exogenous isolated plasmids conferring TcR. The direct DNA-based analysis showed that tet(A) and tet(K) genes were detected in all habitats, whilst tet(C) and tet(E) were present in fishfarm and wastewater effluent samples and tet(M) was detected in fish-farm and coastal samples. Resistance genes tet(h), tet(C), tet(K), and tet(M) were detected in 60 of the 89 isolates screened. These isolates were identified by fatty acid methyl ester analysis (FAME) as Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus, and Staphylococcus strains. The presence of the TcR genes in 15% of the bacterial isolates coincided with the presence of IncP plasmids. A habitat-specific dissemination of IncP alpha plasmids in wastewater effluent isolates and of IncP beta plasmids in fishfarm isolates was observed. Exogenous isolation demonstrated the presence of plasmids harbouring TcR genes in all the habitats tested. Plasmids were shown to carry tet(h), tet(C), tet(E), and tet(K) genes. It is concluded that TcR genes are widespread in the seawater habitats studied and often occur on broad host range plasmids that seem to be well disseminated in the bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号