首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Solanum nodiflorum mottle virus (SNMV) RNA2 is a single-stranded, covalently closed circular molecule. RNase T2 or nuclease P1 digests of this RNA contain a minor nucleotide of unusual chromatographic and electrophoretic mobility. This nucleotide is resistant to further digestion by T2 or P1 ribonucleases, or by alkali, but is sensitive to venom phosphodiesterase digestion. Alkaline phosphatase digestion yields a product which is RNase T2 and P1 sensitive. The products of these various digests show that the minor nucleotide is a ribonuclease-resistant dinucleotide carrying a 2' phosphomonoester group with the core structure C2'p3'p5'A. This dinucleotide is found in a unique RNase T1 product of SNMV RNA2, thus establishing a unique location in the sequence for the 2' phosphomonoester group at residue 49. Identical results have been obtained with a second related virus. The phosphomonoester group probably results from the RNA ligation event by which the molecules were circularised.  相似文献   

3.
Rous sarcoma virus, an avian retrovirus, transforms but does not replicate in mammalian cells. To determine to what extent differences in RNA splicing might contribute to this lack of productive infection, cloned proviral DNA derived from the Prague A strain of Rous sarcoma virus was transfected into mouse NIH 3T3 cells, and the viral RNA was compared by RNase protection with viral RNA from transfected chicken embryo fibroblasts by using a tandem antisense riboprobe spanning the three major splice sites. The levels of viral RNA in NIH 3T3 cells compared with those in chicken embryo fibroblasts were lower, but the RNA was spliced at increased efficiency. The difference in the ratio of unspliced to spliced RNA levels was not due to the increased lability of unspliced RNA in NIH 3T3 cells. Although chicken embryo fibroblasts contained equal levels of src and env mRNAs, spliced viral mRNAs in NIH 3T3 cells were almost exclusively src. In NIH 3T3 cells the env mRNA was further processed by using a cryptic 5' splice site located within the env coding sequences and the normal src 3' splice site to form a double-spliced mRNA. This mRNA was identical to the src mRNA, except that a 159-nucleotide sequence from the 5' end of the env gene was inserted at the src splice junction. Smaller amounts of single-spliced RNA were also present in which only the region between the cryptic 5' and src 3' splice sites was spliced out. The aberrant processing of the viral env mRNA in NIH 3T3 cells may in part explain the nonpermissiveness of these cells to productive Rous sarcoma virus infection.  相似文献   

4.
We report a defect in splicing of precursor messenger RNA (pre-mRNA) resulting from a naturally occurring mutation of the gene encoding purine nucleoside phosphorylase (PNP) in a patient with PNP-deficient severe combined immunodeficiency. This defects results from a G to T transversion at the terminal nucleotide of exon 2 within the 5' splice site of intron 2 and causes skipping of exon 2 during processing of PNP pre-mRNA. Translation of the misspliced mRNA results in a reading frameshift at the exon 1-exon 3 junction. The predicted polypeptide encoded by the aberrant mRNA is severely truncated, terminating at 31 amino acids. Only 4 residues at the NH2 terminus of the polypeptide correspond to PNP amino acids. Otherwise the translation product of the misspliced mRNA differs completely from PNP in amino acid sequence and has no PNP activity. The finding of exon skipping in PNP is the first report of a splicing defect resulting in PNP-deficient severe combined immunodeficiency. Analysis of the genomic context of the G-1 to T mutation of the 5' splice site lends support for the exon definition model of pre-mRNA splicing and contributes to the understanding of splice site selection.  相似文献   

5.
6.
7.
Cloning of the RNA2 gene of Saccharomyces cerevisiae.   总被引:12,自引:4,他引:8       下载免费PDF全文
M G Lee  R A Young    J D Beggs 《The EMBO journal》1984,3(12):2825-2830
  相似文献   

8.
We have determined the nucleotide sequence of a 1075-base-pair HindIII fragment of the T4 phage genome. This fragment contains the structural gene (frd) for dihydrofolate reductase and part of the gene (td) encoding thymidylate synthase. The fragment contains a 579-base-pair open reading frame, encoding a 193-residue polypeptide with a calculated mass of 21,603 Da, in agreement with our reported subunit molecular mass of 23,000. The deduced amino acid sequence shows partial homology with other dihydrofolate reductases, with most of the identities lying in regions known to be involved in substrate binding and catalysis. The 3' end of the coding strand overlaps the coding region for thymidylate synthase; the sequence - ATGA -includes an opal terminator for the frd gene and an initiating triplet for the td gene. The deduced amino acid sequence from this initiating ATG is identical, for the first 20 residues, with the NH2-terminal 20 residues reported for the td protein (M. Belfort , A. Moelleken , G. F. Maley , and F. Maley (1983) J. Biol. Chem. 258, 2045-2051). The sequenced HindIII fragment was transferred into a high expression plasmid vector for large scale production of homogeneous T4 dihydrofolate reductase. The experimentally determined sequence of 20 residues at the NH2-terminus of this protein is identical with that deduced from the nucleotide sequence for T4 dihydrofolate reductase.  相似文献   

9.
Exoribonuclease II (RNase II), encoded by the rnb gene, is a ubiquitous enzyme that is responsible for 90% of the hydrolytic activity in Escherichia coli crude extracts. The E. coli strain SK4803, carrying the mutant allele rnb296, has been widely used in the study of the role of RNase II. We determined the DNA sequence of rnb296 and cloned this mutant gene in an expression vector. Only a point mutation in the coding sequence of the gene was detected, which results in the single substitution of aspartate 209 for asparagine. The mutant and the wild-type RNase II enzymes were purified, and their 3' to 5' exoribonucleolytic activity, as well as their RNA binding capability, were characterized. We also studied the metal dependency of the exoribonuclease activity of RNase II. The results obtained demonstrated that aspartate 209 is absolutely essential for RNA hydrolysis, but is not required for substrate binding. This is the first evidence of an acidic residue that is essential for the activity of RNase II-like enzymes. The possible involvement of this residue in metal binding at the active site of the enzyme is discussed. These results are particularly relevant at this time given that no structural or mutational analysis has been performed for any protein of the RNR family of exoribonucleases.  相似文献   

10.
11.
RNase H activity increases markedly after bacteriophage T4 infection of Escherichia coli MIC2003, an RNase H-deficient host. We have extensively purified the RNase H from these T4-infected cells and have shown that the RNase H activity copurifies with a 5' to 3' DNA exonuclease activity. The N-terminal sequence of a 35-kDa protein copurifying with the RNase H activity matches the terminus of the predicted product of an open reading frame (designated ORF A or 33.2) upstream of T4 gene 33, identified previously by Hahn and co-workers (Hahn, S., Kruse, U., and Rüger, W. (1986) Nucleic Acids Res. 14, 9311-9327). Plasmids containing ORF A under the control of the T7 promoter express RNase H and 5' to 3' DNA exonuclease activities as well as a protein that comigrates on sodium dodecyl sulfate-polyacrylamide gels with the 35-kDa protein present in the RNase H purified from T4-infected cells. T4 RNase H removes the pentamer RNA primers from DNA chains initiated by the T4 primase-helicase (gene products 61 and 41). Addition of T4 RNase H and T4 DNA ligase leads to extensive joining of discontinuous lagging strand fragments in the T4 DNA replication system in vitro.  相似文献   

12.
The gene coding for the RNA component of RNase P was cloned from a temperature-sensitive mutant of Escherichia coli defective in RNase P activity (ts709) and its parental wild-type strain (4273), and the complete nucleotide sequences of the gene and its flanking regions were determined. The 5'- and 3'-terminal sequences of the RNA component were determined and mapped on the DNA sequence. The mutant gene has GC-to-AT substitutions at positions corresponding to 89 and 365 nucleotides downstream from the 5' terminus of the RNA sequence. Comparing to the wild-type RNA, the mutant RNA is less stable and rapidly degraded in vivo and in vitro.  相似文献   

13.
The different isoforms of fast skeletal muscle troponin T (TnT) are generated by alternative splicing of several 5' exons in the fast TnT gene. In rabbit skeletal muscle this process results in three major fast TnT species, TnT1f, TnT2f and TnT3f, that differ in a region of 30 to 40 amino acid residues near the N terminus. Differential expression of these three isoforms modulates the activation of the thin filament by calcium. To establish a basis for further structure-function studies, we have sequenced the N-terminal region of these proteins. TnT2f is the fast TnT sequenced by Pearlstone et al. The larger species TnT1f contains six additional amino acid residues identical in sequence and position to those encoded by exon 4 in the rat fast skeletal muscle TnT gene. TnT3f also contains that sequence but lacks 17 amino acid residues spanning the region encoded by exons 6 and 7 of the rat gene. These three TnTs appear to be generated by discrete alternative splicing pathways, each differing by a single event. Comparison of these TnT sequences with those from chicken fast skeletal muscle and bovine heart shows that the splicing pattern resulting in the excision of exon 4 is evolutionarily conserved and leads to a more calcium-sensitive thin filament.  相似文献   

14.
15.
td108 , a transformation-defective (td) deletion mutant of the Schmidt-Ruppin strain of Rous sarcoma virus of subgroup A (SR-A), was molecularly cloned. Two isolates of td viruses, td108 -3b and td108 -4a, obtained by transfection of the molecularly cloned td108 DNAs into chicken embryo fibroblasts, were tested for their ability to induce tumors and generate recovered avian sarcoma viruses ( rASVs ) in chickens. Both td viruses were able to induce tumors with a latency and frequency similar to those observed previously with biologically purified td mutants of SR-A. rASVs were isolated from most of the tumors examined. The genomic RNAs of those newly obtained rASVs were analyzed by RNase T1 oligonucleotide fingerprinting. The results showed that they had regained the deleted src sequences and contained the same set of marker src oligonucleotides as those of rASVs analyzed previously. The src oligonucleotides of rASVs are distinguishable from those present in SR-A. We conclude that those rASVs must have been generated by recombination between the molecularly cloned td mutants and the c-src sequence. The deletions in the td mutants were mapped by restriction enzyme analysis and nucleotide sequencing. td108 -3b was found to contain an internal src deletion of 1,416 nucleotides and to retain 57 and 105 nucleotides of the 5' and 3' src coding sequences, respectively. td108 -4a contained a src deletion of 1,174 nucleotides and retained 180 and 225 nucleotides of the 5' and 3' src sequences, respectively. Comparison of sequences in the 5' src and its upstream region of td108 -3b with those of SR-A, rASV1441 (a td108 -derived rASV analyzed previously), and c-src suggested that the 5' recombination between td108 and c-src occurred from 7 to 20 nucleotides upstream from the beginning of the src coding sequence.  相似文献   

16.
Southern blot analyses of germ-line DNA obtained from rabbits expressing lambda chains of C7 and/or C21 allotypes were performed with a rabbit C lambda region-specific probe; a 12-kbp EcoRI- and a 2-kbp BamHI-hybridizing fragment were detected only in the DNA from rabbits expressing the C21 allotype. The 12-kbp EcoRI fragment was cloned and shown to contain two C lambda region-encoding genes in the same orientation. Each is preceded by a J lambda gene segment. Nonamer-12-bp spacer-heptamer recombination signal sequences were found 5' of each J lambda segment, and splicing signals were identified at the 3' ends of the J lambda segments and the 5' ends of the corresponding C lambda genes. The C lambda 5 gene, which exhibits a sequence identical with that found in several cDNA clones, is carried by the 2-kbp BamHI fragment missing from the genomic DNA of rabbits which do not express the C21 allotype. The second C lambda gene, C lambda 6, lies 3' of C lambda 5, in a 1.6-kbp BamHI fragment which is present in genomic DNAs of all tested rabbits, irrespective of their phenotype. Its sequence is identical with that found in one cDNA clone and differs from that of C lambda 5 in 17 base positions resulting in four amino acid substitutions. A fragment of a cDNA, with a J-C region sequence identical with that encoded by the J lambda 5-C lambda 5 gene pair, was subcloned into a plasmid expression vector. The resulting polypeptide product could be specifically immunoprecipitated by anti-C21 but not anti-C7 alloantisera, showing that some, if not all, C21 allotopes are encoded by the C lambda 5 gene. In contrast, the C lambda 6 gene product was not precipitable, either by anti-C7 or by anti-C21 alloantisera, although it was readily immunoprecipitated by a goat anti-rabbit lambda chain antiserum.  相似文献   

17.
Of 97 nondirected T4 thymidylate synthase-defective (td) mutations, 27 were mapped to the intron of the split td gene. Clustering of these intron mutations defined two domains that are functional in splicing, each within approximately 220 residues of the respective splice sites. Two selected mutations, tdN57 and tdN47, fell within phylogenetically conserved pairings, with tdN57 disrupting the exon I-internal guide pairing (P1) in the 5' domain and tdN47 destabilizing the P9 helix in the 3' domain. A splicing assay with synthetic oligonucleotides complementary to RNA junction sequences revealed processing defects for T4tdN57 and T4tdN47, both of which are impaired in cleavage at the 5' and 3' splice sites. Thus prokaryotic genetics facilitates association of specific residue changes with their consequences to splicing.  相似文献   

18.
We have mapped a gene in the mitochondrial DNA of Candida (Torulopsis) glabrata and shown that it is required for 5' end maturation of mitochondrial tRNAs. It is located between the tRNAfMet and tRNAPro genes, the same tRNA genes that flank the mitochondrial RNase P RNA gene in the yeast Saccharomyces cerevisiae. The gene is extremely AT rich and codes for AU-rich RNAs that display some sequence homology with the mitochondrial RNase P RNA from S. cerevisiae, including two regions of striking sequence homology between the mitochondrial RNAs and the bacterial RNase P RNAs. RNase P activity that is sensitive to micrococcal nuclease has been detected in mitochondrial extracts of C. glabrata. An RNA of 227 nucleotides that is one of the RNAs encoded by the gene that we mapped cofractionated with this mitochondrial RNase P activity on glycerol gradients. The nuclease sensitivity of the activity, the cofractionation of the RNA with activity, and the homology of the RNA with known RNase P RNAs lead us to propose that the 227-nucleotide RNA is the RNA subunit of the C. glabrata mitochondrial RNase P enzyme.  相似文献   

19.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

20.
Complete nucleotide sequence of alfalfa mosaic virus RNA 4.   总被引:5,自引:11,他引:5       下载免费PDF全文
Alfalfa mosaic virus RNA 4, the subgenomic messenger for viral coat protein, was partially digested with RNase T1 or RNase A and the sequence of a number of fragments was deduced by in vitro labeling with polynucleotide kinase and application of RNA sequencing techniques. From overlapping fragments, the complete primary sequence of the 881 nucleotides of RNA 4 was constructed: the coding region of 660 nucleotides (not including the initiation and termination codon) is flanked by a 5' noncoding region of 39 nucleotides and a 3' noncoding region of 182 nucleotides. The RNA sequencing data completely confirm the amino acid sequence of the coat protein as deduced by Van Beynum et al. (Fur.J. Biochem. 72, 63-78, 1977).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号