首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sobue and Nakajima (1978) reported that GABA formation from putrescine is significant in chick embryo brain between days 6 and 8 of incubation. They attributed an important functional role to the putrescine-derived GABA. We found that depletion of putrescine and spermidine in chick embryos by inhibition of ornithine decarboxylase activity did not decrease the in vivo rate of GABA formation, showing that putrescine is, from a quantitative point of view, a negligible source for GABA in chick embryo brain. The changes of brain GABA levels obtained after administration of glutamate decarboxylase inhibitors and in vitro determinations of glutamate decarboxylase activity were compatible with the assumption that GABA is mainly formed by decarboxylation of l-glutamate, even during early brain development. Participation of the NAD+-dependent, aerobic transformation of glutamate into GABA (Seiler and Wagner, 1976) in the overall GABA production of chick embryo brain could, however, not be excluded.  相似文献   

2.
—GABA contents are significantly decreased in the caudate nucleus, putamen-globus pallidus, substantia nigra, and occipital cortex in autopsied brain from Huntington's chorea patients, as compared to values in the same regions from control subjects who have died without neurological disease. Homocarnosine levels are lower in choreic than in control brain, but only in the putamen-globus pallidus and the cerebellar cortex are the differences significant. Activity of the enzyme which synthesizes GABA, glutamic acid decarboxylase, is reduced in the brains of some choreic patients, but may be equally low in brain of control subjects, even though the latter exhibit normal brain GABA content. Low glutamic acid decarboxylase activity in autopsied human brain is not uniquely characteristic of Huntington's chorea. No evidence was found in this study for an inhibitor of glutamic acid decarboxylase in choreic brain, nor for the presence of an isoenzyme with decreased affinity for glutamate. GABA aminotransferase, the enzyme which degrades GABA, was equally active in control and choreic brain; therefore, increased activity of this enzyme cannot account for the low brain GABA levels in Huntington's chorea.  相似文献   

3.
The time course of the effects of aminooxyacetic acid, γ-vinyl GABA, γ-acetylenic GABA, gabaculine, ethanolamine-O-sulphate (EOS) and valproic acid (VPA) on brain GABA content and the activities of glutamic acid decarboxylase (GAD) and GABA aminotransferase (GABA-T), the enzymes involved in biosynthesis and degradation of GABA, was re-determined and compared with the action on the electroconvulsive threshold in mice. All drugs caused significant increases in the seizure threshold, and the temporal pattern of this effect correlated rather well with the induced elevation of brain GABA. However, no clear relationship was found between the extent of GABA increase and the relative increase of seizure threshold. Except for VPA, the time course of the increment in brain GABA followed closely the inhibition of GABA-T. The activity of GAD was gradually decreased by γ-acetylenic GABA and a slow decline of GAD activity was also observed after γ-vinyl GABA. EOS and gabaculine suggesting a feedback repression of GAD synthesis by highly elevated GABA concentrations. Concomitant with significant reduction of GAD activity, a decrease in seizure threshold occurred though brain GABA levels remained markedly elevated. On the other hand, following administration of VPA the effect of GABA levels was paralleled by an increase in GAD activity indicating that the GABA-elevating action of this drug can be attributed at least in part to an activation of GABA synthesis. The data suggest that reduction of GAD activity may be an inevitable consequence of increasing brain GABA concentrations over a certain extent and this effect seems to limit the anticonvulsant efficacy of GABA-T inhibitors.  相似文献   

4.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

5.
GABA added to rat hepatoma (HTC) cells in spinner culture at the time of induction of cell proliferation increased levels of ornithine decarboxylase (ODC) up to two- to threefold above that of control cells. The increases in ODC were also reflected by concomitant increases of intracellular putrescine levels, while spermidine and spermine were unchanged. GABA seems to have a direct stabilizing effect on ODC, since the turnover of the enzyme was slowed almost twofold when measured in cells treated with 10–2 M GABA. The stabilizing effect is most pronounced for GABA, although some amino acids such as asparagine, glutamine, and lysine as well as some GABA analogues and homologues also tend to increase ODC but to a significantly lesser extent than GABA itself. GABA metabolites had no effect on ODC.S-Adenosylmethionine decarboxylase and tyrosine aminotransferase were not affected by the presence of GABA. The GABA effect on ODC may be important in certain types of cells for the regulation of polyamine biosynthesis.  相似文献   

6.
Abstract— dl -Allylglycine, a potent inhibitor of glutamate decarboxylase in vivo when given intraperitoneally, causes a marked decrease in brain GABA concentration and at the same time a dramatic increase in l -ornithine decarboxylase activity and a simultaneous decrease in S -adenosyl- l -methionine decarboxylase activity followed by putrescine accumulation. It does not, however, alter the degree of GABA formation from putrescine. The timing of the recovery of glutamate decarboxylase activity after the injection of dl -allylglycine is concomitant with that of the GABA concentration, indicating that it is probably glutamate decarboxylase that is solely responsible for making up the GABA deficit caused by dl -allylglycine, and that the changes in polyamine metabolism are associated in some indirect way with the recovery process.  相似文献   

7.
Rats were given γ-vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA aminotransferase (GABA-T), by daily subcutaneous injection (100mgkg) for 11 days. Amino acids were quantitated in the brains of the γ-vinyl GABA-treated and control animals 24 h after the last injection, and enzyme activities of GABA-T and glutamic acid decarboxylase (GAD) were measured. Chronic administration of γ-vinyl GABA produced a 150% increase in brain GABA content, along with marked increases in the contents of B-alanine and homocarnosine. Brain GABA-T activity was reduced by 26%, and GAD activity was reduced by 22%. In addition, γ-vinyl GABA caused a marked increase in hypotaurine content in rat brain, suggesting that it acts as an inhibitor of hypotaurine dehydrogenase, and it produced significant decreases in brain contents of glutamine and threonine. Although it is an effective GABA-T inhibitor, γ-vinyl GABA apparently affects several other brain enzymes as well, and it may not be an ideal drug for elevating brain GABA levels in man.  相似文献   

8.
—The effect of hydrazine, unsymmetrical dimethylhydrazine (UDMH) and symmetrical dimethyl hydrazine (SDMH) on GABA metabolism in mouse brain was studied. All three compounds inhibited the activity of glutamic acid decarboxylase, although to different extents. In contrast, very different effects were observed on GABA levels; UDMH causing a decrease, SDMH no effect, and hydrazine a marked increase in the content of the amino acid. These results together with previous data obtained by the authors were used to develop an equation which related the excitable state of the brain to changes in overall GABA metabolism. The major factor affecting brain excitability was a change in the activity of glutamic acid decarboxylase, with a change in the concentration of GABA playing a more minor role. It was suggested that the values obtained from the equation might reflect the content of GABA in a critical subcellular location such as the synaptic cleft.  相似文献   

9.
Abstract: The inactivation of γ-aminobutyrate (GABA)-transaminase by the highly specific and potent neurotoxin gabaculine leads to different neurochemical consequences in the chick brain as opposed to the chick retina. In the brain, GABA levels continually climb, reaching approximately eightfold increases over control values after 24 h. The elevation in GABA levels leads to a time-dependent and coincident fall in glutamate decarboxylase and cysteine- sulfinatc decarboxylase activities, to approximately 50% of control values. On the other hand, in the retina GABA levels only increase to a plateau level two- to threcfold that of control after inactivation of GABA-transaminase. Further- more, although the glutamate decarboxylase activity decreases to about 50% of control values, cysteinesulfinate decarboxylase activity is not affected. These studies show that the processing of GABA in the retina differs from that in the brain, and that cysteinesulfinate and glutamate decarboxylase activity probably reside in different enzyme molecules in the retina, although they may reside in the same enzyme in the brain.  相似文献   

10.
Abstract— 4-Amino hex-5-ynoic acid (γ-acetylenic GABA, γ-ethynyl GABA, RM171.645), a catalytic inhibitor of GABA transaminase in vitro , induces a rapid, long-lasting dose-dependent decrease of GABA transaminase activity and, to a lesser extent, of glutamate decarboxylase activity in the brains of rats and mice when given by a peripheral route. The GABA concentration in whole brain increases up to 6-fold over control values. The action of γ-acetylenic GABA is relatively specific, as no in vivo inhibition of brain aspartate and alanine transaminase activities could be detected. Furthermore, the amount of radioactive drug bound to the protein fraction of brain homogenate is of the same order of magnitude as that of the GABA transaminase present, as calculated from total GABA transaminase activity, molecular weight and specific activity of the pure enzyme. γ-Acetylenic GABA illustrates the usefulness of a catalytic irreversible enzyme inhibitor in altering neurotransmitter metabolism in vivo .  相似文献   

11.
—The effects of several anaesthetic and hypnotic compounds with well-defined excitatory side-effects on glutamate decarboxylase and γ-aminobutyric acid transaminase activity have been examined. The dissociative anaesthetics ketamine and γ-hydroxybutyric acid produced competitive inhibition of glutamate decarboxylase with respect to glutamate at concentrations which had no effect on GABA transaminase activity. The inhibitor constant (Ki) values were, ketamine: 13.3 mm , γ-hydroxybutyric acid; 8.8 mm . The steroid anaesthetic alphaxalone was also a potent competitive inhibitor of glutamate decarboxylase Ki= 4.1 mm ). Pentobarbitone, thiopentone and methohexitone non-competitively inhibited both glutamate decarboxylase and GABA-transaminase but only at high concentration (> 20 mm ). None of the drugs tested produced any significant change in brain GABA or glutamate levels following the injection of an hypnotic or anaesthetic dose. It is proposed that an alteration in the rate of GABA synthesis as a result of the inhibition of glutamate decarboxylase could explain the convulsive properties of the dissociative anaesthetics when given at high doses.  相似文献   

12.
The effects on GABA metabolism of an anticonvulsant drug, di-n-propylacetate (DPA), were studied. Given intraperitoneally DPA increases the brain GABA content and does not change its biosynthesis from glutamic acid. However, it inhibits in vitro both glutamate decarboxylase and aminobutyrate transaminase (GABA-T) activities. The inhibition is more pronounced on the GABA-T and this observation might explain the increase of GABA level.  相似文献   

13.
Abstract— A consistent observation in particular regions of brains of persons having died with Huntington's disease (HD) is a reduction in the concentration of γ-aminobutyric acid (GABA) and a decrease in the activity of its synthetic enzyme, glutamate decarboxylase (EC 4.1.4.15). GABA levels are also reduced in HD cerebrospinal fluids. This study suggests that skin fibroblasts obtained from persons with HD can be used to study their GABA system. A rapid and specific assay for [14C]glutamate– [14C]GABA based on Aminex A-7 chromatography has been developed. Cell monolayers and homogenates of HD cells convert [14C]glutamate to [14C]GABA. GABA synthesis by HD cell homogenates is pyridoxal dependent and is inhibited by 1 mm -aminooxyacetic acid. GABA synthesis by HD and control cell homogenates also show the same thermal sensitivity as rat brain GAD. When compared to non-HD human cells the HD cells reveal disturbances in the non-neuronal GABA metabolic pathway. Concentrated HD cell homogenates synthesize approx 3 times the amount of GABA as control cells. When diluted both extracts made similar amounts of GABA. Synthesis of GABA by HD cell homogenates is not inhibited by cysteine sulfinate. Decarboxylation of glutamate in these cells is therefore most likely due to glutamate decarboxylase and not cysteine sulfinate decarboxylase. HD cells in monolayer also synthesize 3 times the amount of GABA as compared to control cells. In addition, glutamate upake is altered in HD cells. This report indicates there may be a different pattern of enzyme regulation between HD and control cells.  相似文献   

14.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

15.
The GABA Paradox     
GABA, which is present in the brain in large amounts, is distributed among distinctly different cellular pools, possibly reflecting its multiple functions as metabolite, neurotransmitter, and neurotrophin. Its metabolic enzymes also exhibit heterogeneity, because glutamate decarboxylase exists in two isoforms with different subcellular distribution and regulatory properties. Moreover, recent evidence points to a more pronounced regulatory role of the tricarboxylic acid cycle than hitherto anticipated in the biosynthetic machinery responsible for formation of GABA from glutamine. Additionally, GABAergic neurons may contain distinct populations of mitochondria having different turnover rates of the tricarboxylic acid cycle with different levels of association with GABA synthesis from 2-oxoglutarate via glutamate. These aspects are discussed in relation to the different functional roles of GABA and its prominent involvement in epileptogenic activity.  相似文献   

16.
Abstract— The effects of accumulated endogenous GABA on the activity of L-glutamic acid decarboxylase (GAD) were studied in mouse brain. When the content of GABA in the brain was increased after administration in vivo of aminooxyacetic acid (AOAA), there was a reduction of GAD activity which could not be reversed by the addition of pyridoxal-5′-phosphate (PLP). Since inhibition of GAD activity by AOAA could be readily reversed by PLP, the reduction of GAD activity measured in the presence of added PLP indicated a decrease in the level of GAD apoenzyme. Similarly, increase of GABA content by hydrazine was also accompanied by a reduction in the level of GAD. Thiosemicarbazide and hydroxylamine did not affect the content of GABA appreciably, and in both cases levels of GAD remained unchanged when measured in the presence of added PLP. The correlation of the reduction in the levels of GAD with the increases in content of GABA suggests that GABA may regulate its own synthesizing enzyme by feedback repression.  相似文献   

17.
The activities of Glutamate decarboxylase (GAD) and Gamma aminobutyric acid (GABA) were studied in three regions of rat brain in heightened neuronal activity resulting in convulsions by Leptazol. These enzymes were studied in preconvulsive, convulsive and post convulsive phases. The activity of GAD decreases significantly in the preconvulsive phase in all the three regions of brain followed by a significant increase during the convulsive and post convulsive phase in cerebral cortex and cerebellum. The activity of GABA-T decreases maximal during the preconvulsive phase followed by convulsive phase. The activity of this enzyme tended to increase to control values when the postconvulsive phase was reached. Therefore, it is suggested that the concomitant decrease of GAD activity and GABA concentration, is probably an important factor in the onset of convulsions.  相似文献   

18.
Effect of L-cycloserine on brain GABA metabolism   总被引:6,自引:0,他引:6  
The administration of L-cycloserine to mice resulted in a dramatic decrease in the activities of 4-aminobutyrate:2-oxoglutarate aminotransferase (GABA-T) and L-alanine:2-oxoglutarate aminotransferase (ALA-T) in both brain and liver. L-Aspartate:2-oxoglutarate aminotransferase was inhibited only slightly, and brain glutamic acid decarboxylase not at all. Liver ALA-T activity returned to near normal levels within 24 h of L-cycloserine administration whereas liver GABA-T and brain ALA-T activities had returned only halfway to normal levels in the same time period. The recovery in the activity of brain GABA-T was even slower. A consequence of the inhibition of brain GABA-T activity was an elevation in the GABA content of the tissue which was maximal 3 h after L-cycloserine administration and which was still noticeable 8 h after the drug treatment. L-Cycloserine was also a potent in vitro inhibitor of brain GABA-T activity. The inhibition was competitive with respect to GABA, the Ki value being 3.1 X 10(-5) M. The prior administration of L-cycloserine to mice significantly delayed the onset of isonicotinic acid hydrazide induced convulsions.  相似文献   

19.
Pancreatic beta-cells express glutamate decarboxylase (GAD), which is responsible for the production and release of gamma-aminobutyric acid (GABA). Over a 24-h culture period, total GABA release by purified rat beta-cells is eightfold higher than the cellular GABA content and can thus be used as an index of cellular GAD activity. GABA release is 40% reduced by glucose (58 pmol/10(3) cells at 10 mM glucose vs. 94 pmol at 3 mM glucose, P < 0.05). This suppressive effect of glucose was not observed when glucose metabolism was blocked by mannoheptulose or 2,4-dinitrophenol; it was amplified when ATP-dependent beta-cell activities were inhibited by addition of diazoxide, verapamil, or cycloheximide or by reduction of extracellular calcium levels; it was counteracted when beta-cell functions were activated by nonmetabolized agents, such as glibenclamide, IBMX, glucagon, or glucacon-like peptide-1 (GLP-1), which are known to stimulate calcium-dependent activities, such as hormone release and calcium-dependent ATPases. These observations suggest that GABA release from beta-cells varies with the balance between ATP-producing and ATP-consuming activities in the cells. Less GABA is released in conditions of elevated glucose metabolism, and hence ATP production, but this effect is counteracted by ATP-dependent activities. The notion that increased cytoplasmic ATP levels can suppress GAD activity in beta-cells, and hence GABA production and release, is compatible with previous findings on ATP suppression of brain GAD activity.  相似文献   

20.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号