共查询到20条相似文献,搜索用时 15 毫秒
1.
R. C. Roverud 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(5):559-565
A stereotypical approach phase vocalization response of the lesser bulldog bat, Noctilio albiventris, to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bat was not significantly different when presented with naturally structured CF/FM echoes containing FM elements that sweep continuously from about 75-55 kHz in 4 ms or with CF/FM echoes containing FM components constructed from a series of 98 pure tone frequency steps, each with a duration of 0.04 ms. The performance of the bat remained unchanged when the duration of the tone steps was increased up to 0.08 ms but declined sharply to a level that was significantly below that seen with a naturally structured echo when the steps were 0.09 ms or longer. The performance of the bat depended on the duration of the individual tone steps, which could not exceed a specific upper limit of about 0.08 ms. The study suggests that the bats have adaptations for processing individual narrow band segments of FM signals over specific time intervals.Abbreviations CF
constant frequency
- FM
frequency modulation 相似文献
2.
Roald C. Roverud 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,166(2):243-249
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations
FM
frequency modulated
-
CF
constant frequency 相似文献
3.
R. C. Roverud 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1999,185(3):247-253
In a two-alternative, forced-choice task lesser bulldog bats were trained to distinguish between a pure tone pulse and a pulse composed of a series of brief tonal steps oscillating between two different frequencies. The tone-step pulse gradually approximates the pure tone pulse as the frequency difference between the steps becomes progressively smaller. Frequency difference limens for the brief tonal frequency steps were determined for a broad range of ultrasonic frequencies. The variation in tone-step difference limens with frequency appears to be correlated to the frequency structure of the bat's short-constant-frequency/frequency-modulated echolocation sound. There was a marked decline in the value of the relative frequency difference limens (Weber ratio) over a fairly narrow range of frequencies above the constant frequency and a sharp increase in threshold above this range. The relative thresholds for frequency discrimination were small and uniform over the frequency range of the frequency-modulated sweep and increased for frequencies below the frequency- modulated sweep. Thus, the most accurate frequency-discrimination abilities occur over a narrow frequency range around the frequency of the constant-frequency component of returning echoes. Frequency discrimination over the range of frequencies of the frequency-modulated component is relatively good. Accepted: 20 March 1999 相似文献
4.
Roald C. Roverud 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1989,166(2):251-255
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. During the discrimination trials, the bats emitted complex FM/CF/FM pulses containing first harmonic and dominant second harmonic components.Loud free running artificial pulses, simulating the CF/FM part of the natural echolocation components, interfered with the ability of the bat to discriminate target distance. Changes in the frequency or frequency pattern of the artificial pulses resulted in systematic changes in the degree of interference. Interference occurred when artificial CF/FM pulses were presented at frequencies near those of the bat's own first or second harmonic components.These findings suggest that Rhinolophus rouxi uses both the first and second harmonic components of its complex multiharmonic echolocation sound for distance discrimination. For interference to occur, the sound pattern of each harmonic component must contain a CF signal followed by an FM sweep beginning near the frequency of the CF.Abbreviations
CF
constant frequency
-
FM
frequency modulated 相似文献
5.
Discrimination of wingbeat motion by bats,correlated with echolocation sound pattern 总被引:3,自引:0,他引:3
Roald C. Roverud Volker Nitsche Gerhard Neuweiler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,168(2):259-263
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations
CF
constant frequency
-
FM
frequency modulation 相似文献
6.
James A. Simmons Cynthia F. Moss Michael Ferragamo 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,166(4):449-470
1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they are encoded by neural frequency tuning rather than the time-of-occurrence of neural discharges, the perceived range separation of glints in images is not vulnerable to amplitude-latency shifts. 4. The bat perceives an image that is displayed in the domain of time or range. The image receives no evident spectral contribution beyond what is transformed into delay estimates. Although the initial auditory representation of FM echoes is spectrogram-like, the time, frequency, and amplitude dimensions of the spectrogram appear to be compressed into an image that has only time and amplitude dimensions.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
A. Denzinger H. -U. Schnitzler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(5):563-571
Four bats of the species Eptesicus fuscus were trained in a two-alternative forced-choice procedure to discriminate between two phantom targets that differed in range. The rewarded stimulus was located at a distance of 52.7 cm, while the other unrewarded stimulus was further away. Only one target was presented at a time.In the first experiment we measured the range discrimination performance at an echo SPL of –28 dB relative to the bat's sonar transmission. A 75% correct performance level was arbitrarily defined as threshold and was obtained at a delay difference of 80 s, corresponding to a range difference of 13.8 mm.In the second experiment the delay difference was fixed at 150 s and the echo SPL varied between –8 and –48 dB relative to sonar emissions. The performance of the bats depended on the relative echo SPL. At –28 dB the bats showed the best performance. It deteriorated at an increase of the relative echo SPL to –18 dB and –8 dB. The performance also deteriorated when the relative echo SPL was reduced to –38 dB and –48 dB. Only at low relative echo SPLs did the bats partially compensate for the reduction in echo SPL and increased the SPL of their emitted signals by a few dB.Our results support the hypothesis that neurons exhibiting paradoxical latency shift may be involved in encoding target range. This hypothesis predicts a decrease in performance at high echo SPLs as we found it in our experiments. The observed reduction in performance at very low echo SPLs may be due to a decrease in S/N ratio. 相似文献
8.
A. Denzinger H.-U. Schnitzler 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,183(2):213-224
Four Eptesicus fuscus were trained in a range discrimination experiment to choose the closer of two phantom targets. Echo attenuation was roving
between trials returning echoes ranging from −10 dB to −50 dB SPL (sound pressure level) relative to emission SPL. Discrimination
thresholds were determined. After sufficient training, ranging performance was stable and about the same in the range between
−20 dB and −50 dB with range difference thresholds around 300 μs. At −10 dB, performance was poor even after long training.
After additional training at a constant relative echo SPL of −30 dB and a delay difference of 300 μs the performance measured
with roving echo SPL improved at all relative echo SPL between −20 dB and −50 dB but not at −10 dB. The new experimental procedure
improved the performance by additional learning, and the bats generalized over a wide range of relative echo SPL. Threshold
improved to 100 μs when measured at a constant relative echo SPL of −30 dB, again indicating the influence of the experimental
procedure. In correspondence to neurophysiological data the ranging performance deteriorates if the echo SPL is close to the
emission SPL. Signal duration and emission SPL were variable during range discrimination.
Accepted: 7 March 1998 相似文献
9.
Encoding repetition rate and duration in the inferior colliculus of the big brown bat,Eptesicus fuscus 总被引:2,自引:0,他引:2
A. Daniel Pinheiro Min Wu Philip H. -S. Jen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(1):69-85
1. Encoding of temporal stimulus parameters by inferior collicular (IC) neurons of Eptesicus fuscus was studied by recording their responses to a wide range of repetition rates (RRs) and durations at several stimulus intensities under free field stimulus conditions. 2. The response properties of 424 IC neurons recorded were similar to those reported in previous studies of this species. 3. IC neurons were classified as low-pass, band-pass, and high-pass according to their preference for RRs and/or durations characteristic of, respectively, search, approach, or terminal phases of echolocation. These neurons selectively process stimuli characteristic of the various phases of hunting. 4. Best RRs and best durations were not correlated with either the BFs or recording depths This suggests that each isofrequency lamina is capable of processing RRs and durations of all hunting phases. 5. Responses of one half of IC neurons studied were correlated with the stimulus duty cycle. These neurons may preferentially process terminal phase information when the bat's pulse emission duty cycle increases. 6. While the stimulus RR affected the dynamic range and overall profile of the intensity rate function, only little effect was observed with different stimulus durations. 相似文献
10.
P. Höller U. Schmidt 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,179(2):245-254
The orientation behaviour of bats (Phyllostomus discolor, Phyllostomidae), flying inside an octagonal roost-like chamber (ø: 100cm; h: 150cm) was examined.It has been shown that the bats begin turning manoeuvres during flight by turning their head towards the direction they intend to proceed to. During early phases of the flights, cumulative navigation errors were evident, indicating that endogenous spatial information plays a major role in the orientation of the bats. During later phases of the flight this error is diminished again. So it can be concluded that the bats start to use exogenous spatial information for orientation while approaching the target.In order to investigate the relative importance of vision, echolocation and endogenous spatial information for approaching the roost, the landing lattices inside the test arena were changed for non-grid dummies. We found that: 1. combined visual and endogenous information are more important than echoacoustical cues, 2. the bats learned quickly to switch their orientation behaviour in order to get a better performance in avoiding the dummies, 3. the learning performance was influenced by the visual similarity of dummies and the real landing lattice. 相似文献
11.
J. Mogdans H. -U. Schnitzler J. Ostwald 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,172(3):309-323
1. | Echolocating bats (Eptesicus fuscus) were trained to discriminate between simulated targets consisting of one or two echo-wavefronts with internal time delays of up to 100 s. Spectral and temporal properties and total signal energy of the targets were evaluated and predictions for performances of bats derived from receiver models were compared with measured performances. |
2. | Eptesicus fuscus was able to discriminate a one-wavefront target from two-wavefront targets with distinct internal time delays (12 s, 32–40 s and 52–100 s). Performance was not affected by changes in total signal energy. Bats also successfully discriminated between two-wavefront targets with different internal time delays. |
3. | Performance predicted from differences in total energy between targets did not match the measured performance, indicating that bats did not rely on total echo energy. This finding is also supported by the behavioral data. Performance predicted from spectral and temporal receiver models both matched the measured performance and, therefore, neither one of these models can be favored over the other. |
4. | The behavioral data suggest that Eptesicus fuscus did not transform echo information into estimates of target range separation and, therefore, did not perceive the two wavefronts of each simulated two-wavefront echo as two separate targets. |
12.
Discrimination of jittered sonar echoes by the echolocating bat,Eptesicus fuscus: The shape of target images in echolocation 总被引:2,自引:0,他引:2
James A. Simmons Michael Ferragamo Cynthia F. Moss Scott B. Stevenson Richard A. Altes 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(5):589-616
1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination. 相似文献
13.
Daniel Siegismund Anja Schroeter Claudia Lüdecke Andreas Undisz Klaus D. Jandt Martin Roth 《Biofouling》2014,30(9):1023-1033
The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2–3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation. 相似文献
14.
Electrostatic interactions in the association of proteins: an analysis of the thrombin-hirudin complex.
下载免费PDF全文

A. Karshikov W. Bode A. Tulinsky S. R. Stone 《Protein science : a publication of the Protein Society》1992,1(6):727-735
The role of electrostatic interactions in stabilization of the thrombin-hirudin complex has been investigated by means of two macroscopic approaches: the modified Tanford-Kirkwood model and the finite-difference method for numerical solution of the Poisson-Boltzmann equations. The electrostatic potentials around the thrombin and hirudin molecules were asymmetric and complementary, and it is suggested that these fields influence the initial orientation in the process of the complex formation. The change of the electrostatic binding energy due to mutation of acidic residues in hirudin has been calculated and compared with experimentally determined changes in binding energy. In general, the change in electrostatic binding energy for a particular mutation calculated by the modified Tanford-Kirkwood approach agreed well with the experimentally observed change. The finite-difference approach tended to overestimate changes in binding energy when the mutated residues were involved in short-range electrostatic interactions. Decreases in binding energy caused by mutations of amino acids that do not make any direct ionic interactions (e.g., Glu 61 and Glu 62 of hirudin) can be explained in terms of the interaction of these charges with the positive electrostatic potential of thrombin. Differences between the calculated and observed changes in binding energy are discussed in terms of the crystal structure of the thrombin-hirudin complex. 相似文献
15.
F. Lang N. Elsner 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(2):251-260
1. | The oscillations of the tympanal membrane of Locusta migratoria were analysed by combined laser vibrometry and interferometry. Simultaneously the activity in the tympanal nerve was recorded extracellularly. The animal was stimulated by sound pulses and one of the hindlegs was passively moved in a sinusoidal manner simulating stridulation. These stimuli were applied separately and in combination. |
2. | Sound stimulation elicited high-frequency membrane oscillations, whereas leg movements induced slow rhythmic membrane displacements. During combined sound and movement stimulation these two types of oscillations superimposed without mutual interference. |
3. | The tympanal nerve responded to sound with well synchronized receptor activity. The leg movement elicited less synchronized, phase-coupled activity. During combined sound and movement stimulation the responses to the two types of stimuli interfered strongly. |
4. | The activity patterns of single receptor fibres and auditory interneurons were reanalysed from this point of view. The extent of synchronization of the receptors is found to be the major difference between the sound-induced and the movement-induced activation of the auditory system. A filter mechanism is postulated, consisting in the activation of some higher order auditory interneurons only by well-synchronized presynaptic activity, such as is induced by steeply rising sound pulses. |
16.
One of the necessary conditions for a protein to be foldable is the presence of a complete set of folding elements (FEs) that are short contiguous peptide segments distributed over an amino acid sequence. Previous studies indicated the FE assembly model of protein folding, in which the FEs interact with each other and coalesce to form an intermediate(s) early in the folding reaction. This suggests that a clue to the understanding of the determinants of protein foldability can be found by investigating how the FEs interact with each other early in the folding and thereby elucidating roles of the FEs in protein folding. To reveal the formation process of FE-FE interactions, we studied the early folding events of Escherichia coli dihydrofolate reductase (DHFR) utilizing systematic sequence perturbation analysis. Here, systematic single amino acid substitutions were introduced inside of the FEs (W30X in FE2, V40X in FE3, N59X in FE4, and I155X in FE10; X refers to various amino acid residues), and their kinetic refolding reactions were measured by stopped-flow circular dichroism and fluorescence. We show that the interactions around Trp30 and Ile155 are formed in the burst phase intermediate, while those around Val40 and Asn59 are formed in the transition state of the subsequent folding phase (tau5-phase) and in much later processes, respectively. These and previous results suggest that FE2 and FE10, and also FE1 and FE7, involved in the loop subdomain of DHFR, interact with each other within a millisecond time range, while the stable FE3-FE4 interactions are formed in the later processes. This may highlight the important roles of the FEs mainly inside of the loop subdomain in formation of the burst phase intermediate having a hydrophobic cluster and native-like overall topology and in acquisition of the foldability of DHFR. 相似文献
17.
Quantitative analysis of the interaction between immune complex and C1q complement subcomponent. The role of interdomain interactions in rabbit IgG in binding of C1q to immune precipitates.
下载免费PDF全文

A novel method was developed for the analysis of the interaction of large multivalent ligands with surfaces (matrices) to analyse the binding of complement subcomponent C1q to immune precipitates. Our new evaluation method provides quantitative data characteristic of the C1q-immune-complex interaction and of the structure of the immune complex as well. To reveal the functional role of domain-domain interactions in the Fc part of IgG the binding of C1q to different anti-ovalbumin IgG-ovalbumin immune complexes was studied. Immune-complex precipitates composed of rabbit IgG in which the non-covalent or covalent bonds between the heavy chains had been eliminated were used. Non-covalent bonds were abolished by splitting off the CH3 domains, i.e. by using Facb fragments, and the covalent contact was broken by reduction and alkylation of the single inter-heavy-chain disulphide bond. The quantitative analysis of the binding curves provides a dissociation constant (K) of 200 nM for the interaction between C1q and immune precipitate formed from native IgG. Surprisingly, for immune precipitates composed of Facb fragments or IgG in which the inter-heavy-chain disulphide bond had been selectively reduced and alkylated, stronger binding (K = 30 nM) was observed. In this case, however, changes in the structure of the immune-complex matrix were also detected. These structural changes may account for the strengthening of the C1q-immune-complex interaction, which can be strongly influenced by the flexibility and the binding-site pattern of the immune-complex precipitates. These results suggest that domain-domain interactions in the Fc part of IgG affect the segmental mobility of IgG molecules and the spatial arrangement of the immune-complex matrix rather than the affinity of individual C1q-binding sites on IgG. 相似文献
18.
Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease 总被引:11,自引:0,他引:11
Höglinger GU Carrard G Michel PP Medja F Lombès A Ruberg M Friguet B Hirsch EC 《Journal of neurochemistry》2003,86(5):1297-1307
Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II-V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels >/= 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition. 相似文献
19.
Zhicheng R. Qiu Lidia Chico Jonathan Chang Stewart Shuman Beate Schwer 《RNA (New York, N.Y.)》2012,18(11):1996-2011
20.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS. 相似文献