首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procellariiforms are unique among seabirds in storing dietary lipids in both adipose tissue and stomach oil. Thus, both lipid sources are potentially useful for trophic studies using fatty acid (FA) signatures. However, little is known about the relationship between FA signatures in stomach oil and adipose tissue of individuals or whether these signatures provide similar information about diet and physiology. We compared the FA composition of stomach oil and adipose tissue biopsies of individual northern fulmars (N = 101) breeding at three major colonies in Alaska. Fatty acid signatures differed significantly between the two lipid sources, reflecting differences in dietary time scales, metabolic processing, or both. However, these signatures exhibited a relatively consistent relationship between individuals, such that the two lipid sources provided a similar ability to distinguish foraging differences among individuals and colonies. Our results, including the exclusive presence of dietary wax esters in stomach oil but not adipose tissue, are consistent with the notion that stomach oil FA signatures represent lipids retained from prey consumed during recent foraging and reflect little metabolic processing, whereas adipose tissue FA signatures represent a longer-term integration of dietary intake. Our study illustrates the potential for elucidating short- versus longer-term diet information in Procellariiform birds using different lipid sources.  相似文献   

2.
Fatty acid concentrations found in the yolk of green sea turtles reflect differences in the diet of the mothers. All of the 12 fatty acids measured in yolk samples were significantly different between eggs produced from the pellet and wild-type diets. However, the relative pattern of yolk fatty acids in the green turtle mirrored those of other reptiles. Yolk samples contained mostly (63–67%) 14:0. 16:0, 16:1n-7 and 18:1n-9. Yolks from captive animals on pellet diet contained an additional 17.64% of the total yolk lipid as 12:0 and 18:2n-6. Wild yolks contained an extra 11.41% of lipid as 18:0 and 18:1n-7. Selection of fatty acids for the yolk should balance the energetic and anabolic needs of the embryo. Eggs are provisioned based on maternal metabolism of available nutrients and subtle differences between natural foods and those available in captivity could affect the viability of future eggs.  相似文献   

3.
Blubber fatty acid(s) (FA) signatures can provide accurate estimates of predator diets using quantitative FA signature analysis, provided that aspects of predator FA metabolism are taken into account. Because the intestinal absorption of dietary FA and their incorporation into chylomicrons (the primary transport lipoproteins for dietary FA in the blood) may influence the relationship between FA composition in the diet and adipose tissue, we investigated the metabolism of individual FA at these early stages of assimilation. We also investigated the capacity of chylomicron signatures to provide quantitative estimates of prey composition of an experimental meal. Six captive juvenile grey seals (Halichoerus grypus) were fed either 2.3 kg (n=3) or 4.6 kg (n=3) of Atlantic herring (Clupea harengus). Although chylomicron FA signatures resembled diet signatures at all samplings, absolute differences were smallest at 3-h post-feeding, when chylomicrons were likely largest and had the greatest ratio of triacylglycerol to phospholipid FA. Specific FA that differed significantly between diet and chylomicron signatures reflected either input from endogenous sources or loss through peroxisomal -oxidation. When these aspects of metabolism were accounted for, the quantitative predictions of diet composition generated using chylomicron signatures were extremely accurate, even when tested against 28 other prey items.  相似文献   

4.
Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models.  相似文献   

5.
Nutrients that are limited in availability, such as carotenoids, are potentially involved in trade-offs between homeostasis and reproduction. Despite their importance, factors that affect the capacity of female birds to meet their carotenoid requirements are poorly understood. We used δ15N stable isotope analysis to relate foraging behavior to yolk carotenoid deposition in two seabirds, Cassin’s auklet (Ptychoramphus aleuticus) and rhinoceros auklet (Cerorhinca monocerata), during each of five years. As expected from their narrower trophic range, Cassin’s auklets produced yolks with fewer carotenoid types than did rhinoceros auklets (one vs. three). Cassin’s auklets also fed on a lower trophic level diet richer in carotenoids, yet had lower total yolk carotenoid levels, which suggests a role for species-specific adaptations for carotenoid uptake and utilization. Within both species, lower trophic-level feeding was linked to higher yolk carotenoid levels, but through different mechanisms. In Cassin’s auklets, it was due to a population-wide response to environmental variation: in warm-water years, all females fed at a low trophic level and produced carotenoid-rich yolks. In rhinoceros auklets, it was due to individual differences similarly expressed in all years: females fed across a wide trophic range, and those that fed at a low trophic level produced carotenoid-rich yolks. Rhinoceros auklets bred more successfully in years when their yolks were rich in carotenoids, probably due to a correlated response to stronger marine primary production. Our results are novel because they link avian yolk carotenoid deposition to behavioral and environmental variations.  相似文献   

6.
Zooplankton transfer ecologically important fatty acids (FA) from their diets to upper trophic levels. We used diet‐switching experiments with 13C‐labeled food sources to determine the time scale at which dietary uptake is manifested in the FA profiles of Daphnia magna. Daphnia dramatically shifted their FA composition in response to diet change within only four days, however Daphnia switched from a high quality (i.e. Cryptomonas) to a moderate quality (Scenedesmus) diet retained the most physiologically important FA from their original diet source even after 14 days. In particular, Daphnia exhibited long‐term retention of eicosapentaenoic (EPA; 20:5ω3) and arachidonic acid (ARA; 20:4ω6) when switched from Cryptomonas to Scenedesmus. Similarly, when switched from Scenedesmus to Cryptomonas, Daphnia took up a high proportion of EPA and ARA after only two days. The phospholipid fatty acid (PLFA) fraction in Daphnia was preferentially enriched with stearic (18:0), oleic (18:1ω9), and linoleic acid (LIN; 18:2ω6). In contrast with studies of marine copepods, dietary FA also strongly affected the PLFA composition (structural lipids) of Daphnia. Results of δ13C signatures of individual FA provided evidence of elongation and desaturation of α‐linolenic (ALA; 18:3ω3) or stearidonic acid (SDA; 18:4ω3) to EPA 10 days after a diet switch to EPA‐deficient Scenedesmus. Differences in the ARA content of Daphnia fed Cryptomonas and Scenedesmus suggest Daphnia consuming Cryptomonas synthesized ARA via retroconversion of ω6‐docosapentaenoic acid (ω6‐DPA; 22:5ω6). Daphnia preferentially accumulate and retain, as well as bioconvert, those FA that are also most physiologically important for fish production. Our results also indicate Daphnia FA composition responds to their diet on a short temporal scale and analyses of lipid biomarkers in zooplankton provide strong insights into the food sources that support their production.  相似文献   

7.
Fatty acid (FA) signature analysis is a powerful tool to investigate foraging ecology and food web dynamics in marine ecosystems. However, use of FA signatures to qualitatively or quantitatively infer diets is potentially complicated by effects of nutritional state on lipid metabolism. Estimation of diets using the quantitative fatty acid signature analysis (QFASA) model requires the use of calibration coefficients to account for predator metabolism of individual FAs. We conducted a captive feeding experiment to determine the effects of a 50% reduction in food intake on growth rate and adipose tissue FA signatures of tufted puffin (Fratercula cirrhata) nestlings, a species that routinely experiences food restriction during growth. FA signatures of chicks fed low- and high-calorie diets both exhibited a change in composition in response to the dietary shift with the direction of change in the composition of individual FAs matching the direction of change in the dietary FAs. Despite a growth rate in the restricted nestlings that was 38% of those in the well-fed group, rates of FA turnover were not different between high and low-calorie treatments, and turnover was close to, but not entirely complete, after 27 days on both high-calorie and restricted diets. FA signatures of tufted puffin nestlings were significantly affected by caloric restriction, but these effects were much less pronounced than those of dietary turnover, and calibration coefficients of puffins fed low and high-calorie diets were highly correlated. Our results demonstrate that changes in physiological state can affect FA metabolism, but future research is required to better understand whether the size of these effects is sufficient to substantially alter diet estimation using the QFASA model.  相似文献   

8.
A comparative study has been made of the major lipid fractions and their fatty acid compositions in the yolk of eggs from ostriches under wild and farmed conditions. There were no differences in the lipid contents and proportions of the lipid fractions between the two groups of yolks. In both groups of yolks triacylglycerol and phospholipid were the major fractions. In the eggs from the wild ostriches, all the lipid fractions displayed substantial concentrations of C18 polyunsaturated fatty acids, triacylglycerol being particularly rich in linolenic acid and phospholipid rich in linoleic acid; phospholipid displayed substantial concentrations also of C20 and C22 polyunsaturates. There were considerable differences in the fatty acid compositions between the yolks. Those from the farmed birds displayed lower proportions of C18 polyunsaturates, particularly linolenic acid, throughout the lipid fractions. Compensatory increases were displayed most obviously in the concentrations of oleic acid and palmitoleic acid as well as other acids. The distinctive and extensive changes in fatty acid composition, particularly relating to the polyunsaturates, are discussed with respect to overall dietary requirements and specificities for embryo metabolism and possible effects on reproductive performance.  相似文献   

9.
To examine whether membrane fatty acid (FA) composition has a greater impact upon specific components of oxidative phosphorylation or on overall properties of muscle mitochondria, rainbow trout (Oncorhynchus mykiss) were fed two diets differing only in FA composition. Diet 1 was enriched in 18:1n-9 and 18:2n-6 while Diet 2 was enriched in 22:6n-3. The FA composition of mitochondrial phospholipids was strongly affected by diet. 22:6n-3 levels were twice as high (49 %) in mitochondrial phospholipids of fish fed Diet 2 than in those fed Diet 1. 18:2n-6 content of the phospholipids also followed the diets, whereas 18:1n-9 changed little. All n-6 FA, most notably 22:5n-6, were significantly higher in fish fed Diet 1. Nonetheless, total saturated FA, total monounsaturated FA and total polyunsaturated FA in mitochondrial phospholipids varied little. Despite a marked impact of diet on specific FA levels in mitochondrial phospholipids, only non-phosphorylating (state 4) rates were higher in fish fed Diet 2. Phosphorylating rates (state 3), oxygen consumption due to flux through the electron transport chain complexes as well as the corresponding spectrophotometric activities did not differ with diet. Body mass affected state 4 rates and cytochrome c oxidase and F 0 F 1 ATPase activities while complex I showed a diet-specific effect of body mass. Only the minor FA that were affected by body mass were correlated with functional properties. The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment.  相似文献   

10.
Analysis of fatty acids (FAs) is an increasingly utilized tool in studies of trophic ecology in marine ecosystems. This powerful technique has proved useful in delineating spatial and temporal variability in diets, identifying the consumption of key species, and providing quantitative estimates of diet composition. Although consumer FA signatures are undeniably influenced by diet, they can also be affected by other factors including life-history stage, diet quality, and physiological state. Here, we review how FAs are assimilated, deposited, and metabolized in birds, and the implications of these processes on the various tissues commonly sampled for FA analyses. We then examine the assumptions underlying FA signature analysis when used in studies of seabird trophic ecology and propose a direction for future laboratory experiments that are needed to refine the approach. The correct interpretation of FA data relies on accounting for factors that alter predator FA metabolism and controlling for variability in the lipid content and FA composition of prey. Efforts should also be made to incorporate uncertainty associated with predator metabolism into models designed for quantitative diet estimation.  相似文献   

11.
Yolk fatty acid (FA) concentrations and egg quality were evaluated with respect to the inclusion of different levels of marine fish oil (MFO) and linseed oil (LO) in a basal diet. Ten diets were arranged factorially with two levels of MFO addition (15 and 17 g/kg) and five levels of linseed oil (1, 2, 3, 4 and 5 g/kg). Two commercial feeds with no n-3 FA sources added, or containing 15 g MFO/kg served as controls for egg sensorial quality traits. Type of diet did not affect egg production traits, nor total fat content in yolk or saturated and monounsaturated FA concentration in yolk fat. An increase in the inclusion of MFO from 15 to 17 g/kg increased (P<0.05) egg yolk content of total n-3 FA, C20:5 n-3 and C22:6 n-3 by 3.3, 9.8 and 3.5%, respectively. Linseed oil addition increased linearly (P<0.001) the level of total n-3 FA and the proportion of C18:3 n-3, C20:5 n-3, C22:5 n-3 and C22:6 n-3 retained in yolk fat by respectively 131, 12.0, 6.9 and 20.7% between extreme diets. Efficiency of retention of n-3 FA decreased (P<0.001) with dietary level of n-3 FA, and with the dietary ratio of MFO to LO. Both MFO and LO addition decreased (P<0.001) C20:4 n-6 to C18:2 n-6 ratio in yolk. Sensorial quality of eggs was not affected by treatments and did not differ with respect of that obtained in commercial n-3 FA enriched eggs. No interaction was found between LO and MFO addition for any of the traits studied. Regression equations have been calculated in order to predict efficiency of retention and yolk fat content of LC n-3 and n-6 FA from dietary characteristics.  相似文献   

12.
Several parameters can affect membrane lipid composition in bivalves, including diet. Although two fatty acids (FA) 22:6n-3 and 20:5n-3 are essential membrane components, they are sparingly synthesized by bivalves and must be obtained from their diet. Here, effects of dietary modifications of membrane lipid composition were studied at both cellular and subcellular levels in the oyster Crassostrea gigas. To this end, we compared oysters fed two monoalgal diets that differed markedly in their FA composition and a mix of both. As expected, algae impacted phospholipids, in particular 22:6n-3 and 20:5n-3, reflecting differences of dietary microalgae FA composition. Meantime, total saturated FA, total monounsaturated FA, total polyunsaturated FA and total non-methylene-interrupted FA varied little and phospholipid class composition was only slightly affected by diets. Measures made in hemocytes indicated that only mitochondrial membrane potential was affected by diets. Total ROS production as well as mitochondrial superoxide production did not differ with diet. There was no difference in phosphorylating (state 3) and non-phosphorylating (state 4) rates of oxygen consumption rates or in cytochrome c oxidase activity of mitochondria isolated from gills between the three diets. Similarly, neither cytochromes a, b, c or c 1 content nor citrate synthase activities were changed, suggesting that number and morphology of mitochondria were not affected by dietary treatment. These results suggest that oysters could possess high homeostatic capabilities, at both cellular and subcellular levels, to minimize the effect of dietary FA and related membrane lipid FA modifications on mitochondrial functions. These capabilities could be a means to face variations in diet composition in their natural environment and to preserve important oyster physiological functions such as growth and reproduction.  相似文献   

13.
Fertile eggs obtained from alligators reared in captivity typically exhibit high rates of embryonic mortality. Also, the fatty acid composition of the yolk lipid of the captive eggs is markedly different from that observed in eggs from wild alligators, possibly as a result of differences in maternal diet in the two situations. The fatty acid compositions of tissue lipids during the embryonic development of wild and captive alligators were compared. The lipids of liver, adipose tissue and heart of the two types of embryo displayed fatty acid profiles which generally reflected the acyl compositions of the respective yolks. Thus the lipids from these tissues of the captive embryos contained markedly higher proportionate levels of linoleic and linolenic acids, lower levels of palmitoleic acid, and, in general, lower levels of docosahexaenoic acid and other C20 and C22 polyunsaturates, in comparison to the values for the wild embryos. In contrast, the fatty acid composition of the brain phosphoglycerides was very similar in the two types of embryo. Thus, at least in those embryos which had survived during the developmental period studied, the brain was able to maintain a relatively constant fatty acid composition, in spite of major differences between the wild and captive eggs in the proportions of the various fatty acids supplied from the yolk. It is suggested that a major cause of embryonic mortality in the captive embryos could be a failure to maintain an adequate level of docosahexaenoic acid in the developing brain.  相似文献   

14.
Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (−12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.  相似文献   

15.
Dietary conditioning of juvenile trout changed the acyl chain composition of mitochondrial phospholipids and the oxidative capacities of muscle mitochondria. Trout were fed three diets differing only in fatty acid (FA) composition. The highly unsaturated 22:6 n-3 (DHA) accounted for 0.4, 14, and 30% of fatty acids in Diets 1, 2 and 3. After 10 weeks of growth, the dietary groups differed markedly in FA composition of mitochondrial phospholipids, with significant dietary effects for virtually all FA. Mean mitochondrial DHA levels were 19, 40 and 33% in trout fed Diets 1, 2 and 3. Mitochondrial oxidative capacities changed with diet, while mitochondrial concentrations of cytochromes and of the adenylate nucleotide translocase (nmol mg1 protein) did not. Mitochondria from fish fed Diet 1 had higher non-phosphorylating (state 4) rates at 5°C than those fed other diets. When phosphorylating (state 3) rates differed between dietary groups, rates at 5 and 15°C were higher for fish fed the more unsaturated diets. Stepwise multiple regressions indicated that FA composition could explain much (42–70%) of the variability of state 4 rates, particularly at 5°C. At 15°C, FA composition explained 16–42% of the variability of states 3 and 4 rates. Similar conclusions were obtained for the complete data set (trout fed diets 1, 2 and 3) and for the data from trout achieving similar growth rates (e.g. those fed Diets 1 and 2). Neither general characteristics of membrane FA, such as % saturates, unsaturation index, n-3, n-6 or n-3/n-6 nor levels of abundant unsaturated FA such as DHA or 18:1(n-9 + n-7), were systematically correlated with mitochondrial capacities even though they differed considerably between trout fed the different diets. Relatively minor FA (20:5n-3, 20:0, 18:2n-6, 18:3n-3, 18:0 and 15:0) showed better correlations with mitochondrial oxidative capacities. This supports the concept that acyl chain composition modulates mitochondrial capacities via interactions between membrane proteins and specific FA of particular phospholipid classes in their microenvironment.  相似文献   

16.
An association between dietary fish oil and decreased yolk weight and reduced sensory quality of eggs has been reported when eggs are enriched with n-3 FA from fish oil. Seaweeds are an important source of compounds that seem to increase egg weight when included in the laying hen diet. The objectives of this study were to determine the influence of the dietary seaweeds Macrocystis pyrifera, Sargassum sinicola and Enteromorpha sp. on the physical quality, lipid composition and consumer acceptability of n-3 FA enriched eggs. One-hundred and forty-four 35-week-old Leghorn hens were randomly distributed in four treatments that consisted of the inclusion of 2% of sardine oil (SO) and 10% of each marine alga (MA) in laying hens' diets; a control diet (C) was also prepared. The study lasted 8 weeks and egg physical quality, egg lipids and sensory attributes were evaluated. The results showed that incorporation of 10% M. pyrifera in the diets is an effective way of increasing the n-3 FA content, the albumen height and yolk color, but not the egg weight, when these are enriched with n-3 FA from fish oil. The egg flavor was also not affected.  相似文献   

17.
Fish are the main source of long-chain polyunsaturated fatty acids (LC-PUFA, >C18) for human consumption. In general, it has been widely observed that the fatty acid (FA) profiles of farmed fish are reflective of the diet. However, the degree of tissue FA “distortion” based on incorporation of different dietary FA into fish tissues varies greatly depending on FA type, fish species and environmental factors. In terms of fish FA composition, this variation has not been comprehensively reviewed, raising the question: “Are fish what they eat?”. To date, this remains unanswered in detail. To this end, the present review quantitatively summarized the ‘diet-fish’ FA relationship via an analysis of FA composition in diets and fish tissues from 290 articles published between 1998 and 2018. Comparison of this relationship among different fish species, tissue types or individual FA was summarized. Furthermore, the influence of environmental factors such as temperature and salinity, as well as of experimental conditions such as fish size and trophic level, feeding duration, and dietary lipid level on this relationship are discussed herein. Moreover, as a means of restoring LC-PUFA in fish, an emphasis was paid to the fish oil finishing strategy after long-term feeding with alternative lipid sources. It is envisaged that the present review will be beneficial in providing a more comprehensive understanding of the fundamental relationship between the FA composition in diets, and subsequently, in the farmed fish. Such information is integral to maintaining the quality of farmed fish fillets from the perspective of FA composition.  相似文献   

18.
Fatty acid (FA) signature analysis has been used to study foraging ecology and food webs in marine ecosystems. This powerful method provides information about diets over an extended time period (e.g., 2–4 weeks), rather than just the most recent meal as with most traditional approaches. Using consumer FA signatures, along with a comprehensive database of diet FA signatures, and accounting for consumer FA metabolism, it is possible to estimate the proportions of diet items in the consumer’s diet using quantitative FA signature analysis (QFASA). However, before applying QFASA to free-ranging populations, ideally, controlled feeding studies are performed to determine FA deposition and turnover characteristics. We conducted feeding experiments to validate QFASA in captive spectacled eiders (Somateria fischeri) and Steller’s eiders (Polysticta stelleri) as a minimally invasive method for studying the diets of these threatened species. We determined FA deposition in eider adipose tissue relative to long-term diet, and developed calibration coefficients (CCs) to account for eider lipid metabolism. Using these CCs with subsequent diet trials, QFASA accurately indicated diet and diet switches. QFASA estimates also indicated that turnover of dietary FAs was not complete by 21 or 29 days, and confirmed that diets could be estimated over an extended period of >29 days. Thus, our understanding of diet can be backtracked to more than a month in captive feeding eiders. We conclude that applying QFASA techniques to eiders and other birds in the wild has the potential to provide valuable information about their diets at various life history stages.  相似文献   

19.
Fatty‐acid (FA) profiles of liver and muscle tissue from juvenile Atlantic croaker Micropogonias undulatus were examined over a 15 week diet‐switch experiment to establish calibration coefficients (CC) and improve understanding of consumer–diet relationships for field applications. Essential FAs [docosahexaenoic acid (DHA), 22:6n‐3 and eicosapentaenoic acid (EPA) , 20:5n‐3] decreased and 18:2n‐6 increased in tissues of M. undulatus fed diets with increasing proportions of terrestrial v. marine lipid sources. Non‐linear models used to estimate the incorporation rate and days to saturation of per cent 18:2n‐6 in tissues showed that livers incorporated 18:2n‐6 faster than muscle, but the proportions of 18:2n‐6 in muscle were higher. CCs were established to determine proportions of FA deposition in tissues relative to diet. Many CCs were consistent amongst diet treatments, despite growth and dietary differences. The CCs can be used to discern FA modification and retention within tissues and as tools for future quantitative estimates of diet histories. Incorporation rates and CCs of 18:2n‐6 were applied to a sub‐set of field samples of wild M. undulatus to understand habitat use and feeding ecology. Altogether, these results suggest that FAs provide a time‐integrated measure of diet in aquatic food webs and are affected by tissue type, growth rate and the influence of mixed diets.  相似文献   

20.
Fatty acids (FA) have a diversity of structures that are transferred with little modification through food webs, making them valuable in assessing diets of animals that cannot be directly observed feeding. Before using FA to estimate diets, it is necessary to evaluate variation in FA signatures within and among individuals of a given species. To begin assessing diets and foraging of western Arctic bowhead whales (Balaena mysticetus), we examined the FA in blubber of 64 bowheads taken in the spring and fall subsistence hunts in 1997–2002 at Barrow and Kaktovik, Alaska. We found no significant differences in FA characteristics of inner blubber layers taken from either duplicate samples on the dorsal surface, or between dorsal and ventral sites. Significant differences were found in the FA composition between inner and outer layers of blubber at the same body site. We also found age, season and year to have significant effects on FA composition; however, gender was not found to be significant. While the importance of the Beaufort Sea as a feeding ground of bowhead whales remains uncertain, our results indicate that adults and sub-adults foraged to some extent on different prey and that both age classes consumed copepods there in summer at sufficient levels to significantly alter their blubber FA profiles. Both of these findings correspond with dietary conclusions reached from the analysis of stomach contents. Furthermore, we found compelling evidence that yearly variation in bowhead FA reflect changes in FA compositions of phytoplankton at the base of the food web, probably in response to climate variation. Variability in phytoplankton-derived FA in blubber was correlated significantly with yearly mean values of the Pacific Decadal Oscillation. FA in bowhead whale blubber, therefore, might be used to monitor effects of climate change on lower trophic levels and production processes in the western Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号