首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc in beta-cell secretory vesicles is essential for insulin hexamerization, and tight vesicular zinc regulation is mandatory. Little is known about zinc ion fluxes across the secretory vesicle membrane and the influence of changes in the extracellular environment on vesicular zinc. Our study aim was to investigate the effect of acute and chronic exposure to various glucose concentrations on zinc in secretory vesicles, the relation between zinc and insulin, and the presence of two zinc transporters, ZnT1 and ZnT4, in INS-1E cells. Zinc ions were demonstrated and semi-quantified using zinc-sulfide autometallography. Insulin content and secreted insulin were measured. Measurements were made on INS-1E cells after exposure to 2.0, 6.6, 16.7, and 24.6 mmol/l glucose for 1, 24, and 96 hours. 1h: Increasing glucose resulted in no changes in intravesicular zinc ions at 2, and 24.6 mmol/l glucose, but a slight increase at 16.7 mmol/l glucose. 24 and 96 h: Increasing glucose led to decreased vesicular zinc ion content accompanied by a decrease in insulin content. ZnT1 and ZnT4 were present in the cytoplasm. Our results demonstrate that intra-vesicular zinc ions respond to changes in the extra-cellolar glucose concentration, especially during chronic high glucose concentrations, where the content of vesicular zinc ions decreases.  相似文献   

2.
Subcutaneous inflammation induced by magnesium silicate (talc) leads to the suppression of bone elongation, osteoblast insufficiency, and subsequent bone loss in rats. Since bone and immunological changes in talc granulomatosis are similar to those observed in zinc deficiency, we investigated the kinetics of zinc tissue distribution and the effects of zinc supplementation on the development of bone loss in rats with talc-induced inflammation. Decrease in serum zinc concentration was observed between 5 and 15 h in rats with talc granulomatosis. It was paralleled by the accumulation of zinc in the liver and rapid disappearance of osteoblasts from the trabecular bone surfaces. However, talc-injected rats supplemented parenterally and orally with zinc sulfate exhibited a decrease in osteoblast trabecular surface comparable to that of unsupplemented rats bearing granulomas despite normalized serum zinc concentrations. Zinc supplementation slightly increased osteoblast trabecular surface in all supplemented groups, but this effect was not significant. We conclude that zinc is the earliest indicator of the acute-phase response in rats with talc granulomatosis. Although zinc appears to be important for the normal function of bone cells, there is no causative relationship between acute zinc deficiency and decreased osteoblast number and activity in rats with talc granulomatosis.  相似文献   

3.
Zinc uptake mechanisms at the apical and basolateral membrane borders of caco-2 cells were examined. This human-derived cell line possesses many morphological and functional characteristics of absorptive small intestinal cells. By day 14, confluent and well-differentiated monolayers were formed when the cells were grown on porous polycarbonate filters. Labelled zinc was placed on the apical or basal side of the monolayer and its uptake by the cells, as well as its transport across the monolayer, were measured. Zinc uptake by the cells from the apical side was found to be a saturable process (Kt = 41 microM; Vmax = 0.3 nmols/cm2/10 min) with a diffusional term at higher concentrations (1.0 sec/cm). Apical uptake was not affected by metabolic inhibitors or potential zinc ligands. Zinc uptake from the basolateral side was concentration dependent (Kd = 1.3 sec/cm) and was partially inhibited (30%) by ouabain and vanadate, suggesting that the (Na-K)-ATPase on the basolateral membrane is involved in the serosal uptake of zinc by the cell. Transport of zinc across the monolayers from the apical or basolateral compartment was concentration dependent and was not affected by metabolic inhibitors. Zinc transport from the basolateral side was greater than 2-fold greater than apical transport. Hence, separate mechanisms can be distinguished with respect to zinc uptake at the apical and basolateral membranes of caco-2 cells.  相似文献   

4.
The induction of micronuclei (MN) in mitotically active cells has been widely used and promoted as a biological marker of exposure to environmental toxins. In our study the effect of zinc on cadmium genotoxicity was investigated in V 79 cells. The results indicate that cadmium chloride exposure for 24 h increased micronucleus frequency and the percentage of binucleated cells in dose-dependent manner. At the highest concentration of cadmium (50 microM Cd) 23 MN were found in 1000 cells. The protective effect of zinc on cadmium genotoxicity was investigated at lower concentrations (5-25 microM CdCl2). At 50 microM Cd, the number of MN increased significantly (16 MN).  相似文献   

5.
Zinc supplements are an effective clinical treatment for infantile diarrheal disease caused by enteric pathogens. Previous studies demonstrated that zinc acts on enteropathogenic Escherichia coli (EPEC) bacteria directly to suppress several virulence-related genes at a concentration that can be achieved by oral delivery of dietary zinc supplements. Our in vitro studies showed that a micromolar concentration of zinc induced the envelope stress response and suppressed virulence in EPEC, providing a possible mechanistic explanation for zinc''s therapeutic action. In this report, we investigated the molecular and physiological changes in EPEC induced by zinc. We found that micromolar concentrations of zinc reduced the bacterial growth rate without affecting viability. We observed increased membrane permeability caused by zinc. Zinc upregulated the RpoE-dependent envelope stress response pathway and suppressed EPEC virulence gene expression. RpoE alone was sufficient to inhibit virulence factor expression and to attenuate attaching and effacing lesion formation on human host cells. By mutational analysis we demonstrate that the DNA-binding motif of RpoE is necessary for suppression of the LEE1, but not the LEE4, operon. Predictably, inhibition of the RpoE-mediated envelope stress response in combination with micromolar concentrations of zinc reduced EPEC viability. In conclusion, zinc induces the RpoE and stress response pathways in EPEC, and the alternate sigma factor RpoE downregulates EPEC LEE and non-LEE virulence genes by multiple mechanisms.  相似文献   

6.
Hwang SR  Hook V 《FEBS letters》2008,582(17):2527-2531
Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B.  相似文献   

7.
Bovine pulmonary artery endothelial cells (BPAEC) were cultured in vitro under a variety of conditions to investigate how metallothionein (MT) might participate in zinc homeostasis. Experimental conditions included 10% serum to ensure that the in vitro environment would be a better reflection of the in vivo situation than with protein-free medium. MT was increased by acutely high zinc concentrations (100-200 micromol/L) in the extracellular environment. MT was relatively insensitive to moderate changes in zinc concentration (2-50 micromol/L), even after prolonged exposure for 7 to 12 days. BPAEC had reduced MT content when grown in medium containing serum that had been dialyzed to remove components with a molecular mass of less than 1,000, including zinc. Because the principal source of the major minerals in the experimental medium was not the serum, their concentrations in the final medium were not significantly influenced by serum dialysis. Restoring the zinc concentration in the medium containing the dialyzed serum did not restore MT content in BPAEC, suggesting that some small molecular weight molecule other than zinc established their basal MT content. This study did not identify these putative factors in serum, but hormones are likely candidates. Forty-eight-hour incubations of BPAEC with interleukin (IL-6) or dexamethasone increased cellular MT; however, 17beta-estradiol decreased MT, and IL-1 and adenosine 3',5'-cyclic phosphate (cAMP) had no discernible effect. We conclude that extracellular zinc concentrations have relatively little impact on the cellular concentrations of MT and zinc of BPAEC in vitro. Zinc homeostasis by BPAEC is not maintained by changing the MT concentration in response to changes in the extracellular zinc environment. (J. Nutr. Biochem. 10:00-00, 1999).  相似文献   

8.
Zinc is an essential trace element in humans. Zinc deficiency can result in a range of serious medical conditions which include effects on growth and development, the immune system, the central nervous system, and the gastrointestinal system. Diagnosis of zinc deficiency is often precluded by the lack of a noninvasive and reliable biomarker. Zinc concentration in nail is considered an emerging biomarker of zinc status in humans. Whether zinc in nail accurately reflects zinc status is beyond the scope of the current study, but is an important research question. The development of a portable method to quickly assess zinc concentration from a single nail clipping could be a useful advance. In this study, single toenail clippings from 60 individuals living in Atlantic Canada were measured for zinc using a portable X-ray fluorescence (XRF) technique. These samples were obtained from the Atlantic PATH cohort, part of the largest chronic disease study ever performed in Canada. Each toenail clipping was measured using three 300 s trials with a mono-energetic portable XRF system. Results were then assessed using two different approaches to the XRF analysis: (1) factory-calibrated zinc concentrations were output from each trial, and (2) energy spectra were analyzed for the characteristic X-rays resulting from zinc. Following the measurement of zinc using the non-destructive portable XRF method, the same clippings were measured for zinc concentration using the “gold standard” technique of inductively coupled plasma-mass spectrometry (ICP-MS). A linear equation of best fit was determined for the relationship between average XRF output zinc concentration and ICP-MS zinc concentration, with a correlation coefficient r = 0.60. Similarly, a linear equation of best fit was found for the relationship between a normalized XRF energy spectrum zinc signal and ICP-MS zinc concentration, with a correlation coefficient r = 0.68. Individual ICP-MS zinc concentrations ranged from 32 μg/g to 140 μg/g, with a population average of 85 μg/g. The results of this study indicate that portable XRF is a sensitive method for the measurement of zinc in a single nail clipping, and provides a reasonable estimation of zinc concentration. Further method development is required before portable XRF be considered a routine alternative to ICP-MS for the assessment of zinc in nail clippings.  相似文献   

9.
Hepatic copper concentration in the guinea-pig increased markedly during the second-half of gestation, attaining a maximum shortly after birth; thereafter, concentration declined rapidly during the neonatal period. Changes in perinatal hepatic copper concentrations paralleled the binding of copper to a cytosolic metallothionein-like component, and the loss of hepatic copper in the neonates coincided with increases in serum copper concentrations. Zinc concentrations of the perinatal liver were low and showed no dramatic developmental changes. The humerus showed striking increases in zinc concentration with gestational age, attaining peak concentration before term and a marked depletion of tissue zinc during the neonatal period.  相似文献   

10.
IntroductionZinc is an essential trace element having manifold functions within living cells. Zinc deficiency but also zinc excess impairs cell-specific functions whereas a balanced zinc level is required for an adequate cell behavior.Material and methodsThis study deals with the impact of cellular priming due to stimulation with interleukin (IL)-1, IL-2, IL-4, IL-6 or the chemokine CXCL12a and its subsequent influence on the intracellular free zinc concentration. Since cellular priming and activation is essential for proper immunological reactions, and across that highly cell-type specific, we investigated T cells, B cells, and peripheral blood mononuclear cells (PBMCs). Additionally, alterations of the intracellular zinc content was investigated by inducing zinc deficiency using the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) with subsequent re-supplementation of zinc, hence generating an intracellular zinc flux. Evaluation of zinc staining with FluoZin3-AM, Zinpyr-1 and Zinquin was done by flow cytometry or by fluorescence microscopy.ResultsOur results indicate that cellular priming for different periods of time (10 minutes/one hour) causes decreased intracellular free zinc concentrations in the FluoZin3-AM staining and increased zinc concentrations stained with Zinpyr-1. Furthermore, zinc supplementation after induced zinc deficiency leads to a fast and excessive rise of the intracellular free zinc levels in most cellular compartments.ConclusionOur study emphasizes the importance of zinc homeostasis and zinc distribution during cellular priming and for certain signaling cascades especially in T and B cells. Moreover, we demonstrated that zinc re-supplementation of zinc deficient cells results in significantly elevated intracellular free zinc concentrations compared to untreated controls. Hence, this underlines the need of a balanced zinc homeostasis for proper immune cell function.  相似文献   

11.
Sperm storage tubules from the utero-vaginal junction of chickens, quails and turkeys were analysed for calcium and zinc using X-ray microanalysis of ultra-rapidly frozen tissue in a scanning electron microscope. This technique enabled the tubular fluid surrounding the stored spermatozoa and the intracellular content of the cells of the sperm storage tubules to be analysed separately and, by using standards with known concentrations, their elemental concentrations were estimated. The mean (+/- SEM) concentration of calcium in the tubular fluid from chickens, quails and turkeys was 17 +/- 3, 19 +/- 3 and 17 +/- 4 mmol kg(-1) wet weight, respectively. The intracellular calcium concentration of the cells of the tubules did not differ significantly from these values and was also similar in the mucosal epithelial cells of the utero-vaginal junction. Zinc was localized in the cells of turkey sperm storage tubules and tubular fluid, but at low concentrations. No zinc could be detected in corresponding structures from chickens and quails. The concentration of calcium in the tubular fluid is within the range known to inhibit the motility of spermatozoa, supporting this function for calcium during storage. Zinc is known to depress turkey sperm metabolism and it may also be involved in inducing quiescence of spermatozoa during storage in this species.  相似文献   

12.
Zinc and myoglobin content in muscles from pigs were studied under various conditions. Zinc concentration was considerably higher in red than in white muscles. In muscles, where the metabolic pattern changes from glycolytic to oxidative during the period from birth to weaning, a simultaneous increase in zinc content was seen. A significant positive correlation exists between myoglobin and zinc content under normal conditions. However, while myoglobin concentration decreases due to iron deficiency anaemia no changes occur in zinc content. It is concluded that no functional link seems to exist between zinc metabolism and myoglobin synthesis in porcine muscles.  相似文献   

13.
Prostate cells accumulate high cellular and mitochondrial concentrations of zinc, generally 3-10-fold higher than other mammalian cells. However, the mechanism of mitochondrial import and accumulation of zinc from cytosolic sources of zinc has not been established for these cells or for any mammalian cells. Since the cytosolic concentration of free Zn(2+) ions is negligible (estimates vary from 10(-9) to 10(-15) M), we postulated that loosely bound zinc-ligand complexes (Zn-Ligands) serve as zinc donor sources for mitochondrial import. Zinc chelated with citrate (Zn-Cit) is a major form of zinc in prostate and represents an important potential cytosolic source of transportable zinc into mitochondria. The mitochondrial uptake transport of zinc was studied with isolated mitochondrial preparations obtained from rat ventral prostate. The uptake rates of zinc from Zn-Ligands (citrate, aspartate, histidine, cysteine) and from ZnCl(2) (free Zn(2+)) were essentially the same. No zinc uptake occurred from either Zn-EDTA, or Zn-EGTA. Zinc uptake exhibited Michaelis-Menten kinetics and characteristics of a functional energy-independent facilitative transporter associated with the mitochondrial inner membrane. The uptake and accumulation of zinc from various Zn-Ligand preparations with logK(f) (formation constant) values less than 11 was the same as for ZnCl(2;) and was dependent upon the total zinc concentration independent of the free Zn(2+) ion concentration. Zn-Ligands with logK(f) values greater than 11 were not zinc donors. Therefore the putative zinc transporter exhibits an effective logK(f) of approximately 11 and involves a direct exchange of zinc from Zn-Ligand to transporter. The uptake of zinc by liver mitochondria exhibited transport kinetics similar to prostate mitochondria. The results demonstrate the existence of a mitochondrial zinc uptake transporter that exists for the import of zinc from cytosolic Zn-Ligands. This provides the mechanism for mitochondrial zinc accumulation from the cytosol which contains a negligible concentration of free Zn(2+). The uniquely high accumulation of mitochondrial zinc in prostate cells appears to be due to their high cytosolic level of zinc-transportable ligands, particularly Zn-Cit.  相似文献   

14.
A trumpeter swan (Cygnus buccinator) was observed near a mill pond in Picher, Oklahoma, USA. It became weakened and emaciated after about 1 mo, was captured with little resistance, and taken into captivity for medical care. Serum chemistry results were consistent with hepatic, renal, and muscular damage. Serum zinc concentration was elevated at 11.2 parts per million (ppm). The swan was treated for suspected heavy-metal poisoning, but died overnight. Gross postmortem findings were emaciation and pectoral muscle atrophy. Histopathologic lesions in the pancreas included mild diffuse disruption of acinar architecture, severe diffuse depletion or absence of zymogen granules, occasional apoptotic bodies in acinar epithelial cells, and mild interstitial and capsular fibrosis. Zinc concentration in pancreas was 3,200 ppm wet weight, and was similar to that reported in the pancreases of waterfowl known to be killed by zinc toxicity. Zinc concentrations in liver (154 ppm) and kidneys (145 ppm) also were elevated. Acute tubular necrosis of the collecting tubules of the kidneys was also possibly due to zinc toxicity. To the authors' knowledge, this is the first confirmed case of zinc poisoning in a trumpeter swan associated with mining wastes.  相似文献   

15.
Zinc toxicity in secretory cells caused a range of effects, mainly depending on metal concentration. Low concentrations activated nectary function increasing nectar secretion but secretion was greatly inhibited or stopped entirely by ongoing concentration. Water loss rate of zinc treated flower parts was significantly reduced whereas green sepals were dehydrated more rapidly in comparison to colored petals. The content of zinc, calcium, magnesium and manganese increased mainly in sepals under excess of zinc, but in the secreted nectar this metal was not evident. Morphological changes were observed in mucilage cells concerning the mucilage structure and appearance. The parenchymatic, subglandular cells displayed an early vacuolarization and cytoplasm condensation. Secretory hairs appeared to be thinner, the apical cell folded inwards and plasmolytic shrinkage became severe in all cells. The waxy cuticula showed an increased electron density. A plasmalemma detachment from the external cell walls was observed creating a gap between cell wall and plasmalemma. ER cisterns of all treated nectary hairs dominated the cytoplasm and electron dense deposits were seen within its profiles. A great number of other organelles were also present, showing electron dense deposits in their membranes as well. The vacuome was drastically reduced in all cells, except in the subglandular ones and electron dense membrane remnants were observed.  相似文献   

16.
A series of experimental methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test, alkaline phosphatase (ALP) activity measurement and Oil Red O stain and measurement were employed to assess the effect of zinc ion on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (MSCs) and the adipogenic trans-differentiation of mouse primary osteoblasts. The results showed that except for individual concentrations of zinc ion there was no effect on the proliferation of MSCs and osteoblasts. Zinc ion inhibited the osteogenic differentiation of MSCs at all the concentrations tested. It also inhibited adipogenic differentiation at all concentrations tested except 10(-9)mol/L. Both of the inhibition effects were attenuated with time increasing. Zinc ion depressed adipocytic trans-differentiation of osteoblasts at concentrations of 10(-11) and 10(-10)mol/L, but the effect could be reversed to promote or even be removed when concentration was increased. It suggests that the influence of zinc ion on osteogenic, adipogenic differentiation of MSCs and adipocytic trans-differentiation of osteoblasts depends on zinc ion concentrations and incubation time. The protective effects of zinc ion on bone may be mediated by modulating differentiation of MSCs away from the adipocytes and inhibiting adipocytic trans-differentiation of osteoblasts. This may in turn promote osteoblast formation and reduce secretion of cytokines which may inhibit osteoclast formation and activation. These findings may be valuable for better understanding the mechanism of the effect of zinc ion on bone.  相似文献   

17.
Although several reports imply that anticoagulants and preservatives contain zinc, the quantity of zinc in heparin, if any, has not been documented. Zinc concentration was determined by flame atomic absorption spectroscopy in varying dilutions of multiple commercially obtained samples of purified sodium heparin N = 15 (microgram Zn/1000 Units heparin). Rubber stoppers of sterile heparin vials and of blood evacuation tubes were incubated in pre-analyzed water or saline on a mechanical shaker with fluid aliquots obtained up to 27 hours and analyzed for zinc content (microgram Zn/0.1 ml). Heparin, with contact or without contact with rubber stoppers, recorded identical zinc concentrations. Zinc concentrations varied from 0.222 +/- 0.01 (mean +/- SE) to 3.49 +/- 0.005 microgram Zn/1000 Units heparin. Leaching of zinc from rubber stoppers of vacutainer tubes (N = 9) was noted only with those containing known chelators of zinc. These results indicate that zinc is present in certain lots of sodium heparin and that caution must be exercised when reporting zinc concentrations of blood samples that contain sodium heparin as the anticoagulant.  相似文献   

18.
Prostate epithelial cells contain the highest levels of zinc among all organs and tissues in the human body. Zinc is accumulated primarily in the mitochondria, where it is responsible for inhibition of mitochondrial aconitase activity, thereby increasing citrate production. The present study was designed to clarify the role of zinc for human prostate epithelial cell growth and apoptosis. Apoptosis of in vitro cultivated human prostate epithelial cells exposed to ZnCl(2) was analyzed by determination of phospholipid membrane asymmetry, nuclear fragmentation, DNA strand breaks, changes of mitochondrial potential and cellular pro/antiapoptotic proteins. Zinc induced apoptosis without involvement of p53 by decreasing mitochondrial transmembrane potential (DeltaPsi(m)) and Bcl-2 protein levels in proliferating epithelial cells. Thus, the high local concentrations of zinc ions in the prostatic lumen seem to be necessary to regulate proliferative activities and to enforce epithelial differentiation processes.  相似文献   

19.
The cytotoxic and mutagenic effects of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) on shallot root tip cells and on V79 Chinese hamster fibroblast cells were examined and compared. In shallot root tips 2,4-D caused changes in mitotic activity, as well as changes in chromosome and chromatin structure, and also changes during the cell cycle. 2,4-D also showed mutagenic and cytotoxic effects on V79 cells in culture in concentrations higher than 10 micrograms/ml. The results in both systems (plant and mammalian cells) were in agreement showing mutagenic activity of 2,4-D in the concentration range higher than usually used in establishing plant tissue culture (greater than 5 micrograms/ml).  相似文献   

20.
We, hereby, characterize the pharmacological effects of physiological concentrations of Zinc on native myenteric P2X receptors from guinea-pig small intestine and on P2X2 isoforms present in most myenteric neurons. This is the first study describing opposite effects of Zinc on these P2X receptors. It was not possible to determine whether both effects were concentration dependent, yet the inhibitory effect was mediated by competitive antagonism and was concentration dependent. The potentiating effect appears to be mediated by allosteric changes induced by Zinc on P2X myenteric channels, which is more frequently observed in myenteric neurons with low zinc concentrations. In P2X2-1 and P2X2-2 variants, the inhibitory effect is more common than in P2X myenteric channels. However, in the variants, the potentiatory effect is of equal magnitude as the inhibitory effect. Inhibitory and potentiatory effects are likely mediated by different binding sites that appear to be present on both P2X2 variants. In conclusion, in myenteric native P2X receptors, Zinc has quantitatively different pharmacological effects compared to those observed on homomeric channels: P2X2-1 and P2X2-2. Potentiatory and inhibitory Zinc effects upon these receptors are mediated by two different binding sites. All our data suggest that myenteric P2X receptors have a more complex pharmacology than those of the recombinant P2X2 receptors, which is likely related to other subunits known to be expressed in myenteric neurons. Because these dual effects occur at Zinc physiological concentrations, we suggest that they could be involved in physiological and pathological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号