首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12   总被引:1,自引:0,他引:1  
Escherichia coli K12 was used as a model system to determine whether ELF magnetic fields (MFs) are a general stress factor. The cells were exposed to ELF MFs (5-100 Hz) at a maximum intensity of 14 mT r. m.s. for circularly polarized MFs and 10 mT r.m.s. for vertically polarized MFs. The response of the cells to the MFs was estimated from the change in protein synthesis by using 2D PAGE. Approximately 1,000 proteins were separated on the 2D gels. The stress-responsive proteins such as CH10, DNAK, CH60, RECA, USPA, K6P1 and SODM were identified from the SWISS-2DPAGE database on the 2D gels. These proteins respond to most stress factors, including temperature change, chemical compounds, heavy metals, and nutrients. When the bacterial cells were exposed to each MF at 5-100 Hz under aerobic conditions (6.5 h) or at 50 Hz under anaerobic conditions (16 h) at the maximum intensity (7.8 to 14 mT r.m.s.), no reproducible changes were observed in the 2D gels. Changes in protein synthesis were detected by 2D PAGE with exposure to heat shock (50 degrees C for 30 min) or under anaerobic conditions (no bubbling for 16 h). Increases in the levels of synthesis of the stress proteins were observed in heat-shocked cells (CH60, CH10, HTPG, DNAK, HSLV, IBPA and some unidentified proteins) and in cells grown under anaerobic conditions (DNAK, PFLB, RECA, USPA and many unidentified proteins). These results suggest that 2D PAGE is sufficient to detect cell responses to environmental stress. The high-intensity ELF MFs (14 mT at power frequency) did not act as a general stress factor.  相似文献   

2.
In the last 30 years, an increasing public concern about the possible harmful effects of electromagnetic fields generated by power lines and domestic appliances has pushed the scientific community to search for a correct and comprehensive answer to this problem. In this work the effects of exposure to 50 Hz sinusoidal magnetic fields, with a magnetic flux density of 0.05 mT and 2.5 mT (peak values), were studied on human peripheral blood mononuclear cells (PBMCs) collected from healthy young and elderly donors. Cell activation and proliferation were investigated by using flow cytometry techniques and 3H-TdR incorporation assays, respectively. The results obtained indicated that exposure to the fields altered neither DNA synthesis nor the capacity of lymphocytes to enter the activation phase and progress into the cell cycle. Thus, the conclusions are that two important functional phases of human lymphocytes, such as activation and proliferation, are not affected by exposures to 50 Hz magnetic fields similar to those found under power lines.  相似文献   

3.
The effects of exposure to static (1–100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In our previous studies, we found that 50 Hz magnetic fields (MFs) could induce the phosphorylation of stress-activated protein kinase (SAPK) and enhance its enzymatic activity. In order to clarify the relationship between MF exposure and the SAPK pathway clearly, we studied the effects of 50 Hz MF exposure on phosphorylation (activation) of SEK1/MKK4 (the upstream kinase of SAPK). A Chinese hamster lung (CHL) cell line was exposed to 50 Hz MFs at two intensities (0.4 and 0.8 mT) for different durations, and Western blot analysis was used to measure the degree of phosphorylation (activation), and nonphosphorylation (non-activation) of SEK1/MKK4 with corresponding antibodies. The results showed that the exposures at both intensities could not induce the phosphorylation of SEK1/MKK4. However, treatment with high osmotic pressure NaCl could induce the phosphorylation of SEK1/MKK4 in cultured cells. It is suggested that 50 Hz MFs may activate the SAPK through a kinase other than SEK1/MKK4.  相似文献   

5.
Protein phosphorylation is an extremely important and widely used mechanism of cellular regulation. Here, the effects of 50 Hz magnetic fields (MFs) on tyrosine phosphorylation were studied. A Chinese hamster lung (CHL) cell line was exposed to 50 Hz magnetic fields at two intensities (0.4 mT and 0.8 mT) for different exposure durations, and western blot analysis was used to measure the degree of tyrosine phosphorylation of cellular proteins. Results showed that both 0.4 mT and 0.8 mT 50 Hz magnetic fields could affect the protein tyrosine phosphorylation in cultured cells. Both intensities could affect the tyrosine phosphorylation of 38 and 97.4 kDa proteins. In addition, 0.4 mT could affect tyrosine phosphorylation of 61.7, 105, and 112 kDa proteins, and 0.8 mT affected the tyrosine phosphorylation of 79 and 150 kDa proteins. Moreover, all the tyrosine phosphorylation changes of these proteins were time-dependent. The findings from this study demonstrated that under these experimental conditions, there was evidence that protein tyrosine phosphorylation was a possible process for ELF-EMF producing bioeffects.  相似文献   

6.
The influence of sinusoidal 45-Hz magnetic fields on the brain functions of 20 volunteers was investigated in a double-blind study using spectral analysis of EEG and measurements of Omega potentials and reaction time (RT). The field strength was 1,000 A/m (1.26 mT) and the duration of exposure was 1 h. Ten volunteers were exposed to a continuous field and ten received an intermittent exposure (1 s on/1 s off). Each person received one real and one sham exposure. One half of the volunteers got the real exposure first and the sham treatment after at least 24 h. For the rest, the sequence was inverse. The measurements of EEG, omega potentials and RT were performed before and after each exposure. Several statistically significant changes were observed, most of them after intermittent exposure. In the EEG, an increase of alpha (7.6–13.9 Hz) activity and a decrease of delta (1.5–3.9 Hz) activity were observed. β waves (14.2–20 Hz) increased in the frontal derivations as did the total power in occipital derivations. The mean and peak frequencies of EEG increased mainly in the frontal derivations. No direct effects on RT were seen. Learning to perform the RT test (decrease of RT in repeated trials), however, seemed to be affected by the exposure. The persons who received real exposure first learned more slowly than those who got sham exposure first. Further experiments are necessary to confirm the findings and for understanding the mechanisms of the effects. © 1993 Wiley-Liss. Inc.  相似文献   

7.
Environmental exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) has been implicated in the development of cancer in humans. An important basis for assessing a potential cancer risk due to ELF-EMF exposure is knowledge of biological effects on human cells at the chromosomal level. Therefore, we investigated in the present study the effect of intermittent ELF electromagnetic fields (50 Hz, sinusoidal, 5'field-on/10'field-off, 2-24 h, 1 mT) on the induction of micronuclei (MN) and chromosomal aberrations in cultured human fibroblasts. ELF-EMF radiation resulted in a time-dependent increase of micronuclei, which became significant after 10 h of intermittent exposure at a flux density of 1 mT. After approximately 15 h a constant level of micronuclei of about three times the basal level was reached. In addition, chromosomal aberrations were increased up to 10-fold above basal levels. Our data strongly indicate a clastogenic potential of intermittent low-frequency electromagnetic fields, which may lead to considerable chromosomal damage in dividing cells.  相似文献   

8.
Effects of alternating magnetic fields (MFs) on the embryonic and fetal development in CBA/Ca mice were studied. Mated females were exposed continuously to a sinusoidal 50 Hz (13 μT or 0.13 mT root mean square) or a sawtooth 20 kHz (15 μT peak-to-peak) MF from day 0 to day 18 of pregnancy for 24 h/day until necropsied on day 18. Control animals were kept under the same conditions without the MF. MFs did not cause maternal toxicity. No adverse effects were seen in maternal hematology and the frequency of micronuclei in maternal bone marrow erythrocytes did not change. The MFs did not increase the number of resorptions or fetuses with major or minor malformations in any exposure group. The mean number of implantations and living fetuses per litter were similar in all groups. The corrected weight gain (weight gain without uterine content) of dams, pregnancy rates, incidences of resorptions and late fetal deaths, and fetal body weights were similar in all groups. There was, however, a statistically significant increase in the incidence of fetuses with at least three skeletal variations in all groups exposed to MFs. In conclusion, the 50 Hz or 20 kHz MFs did not increase incidences of malformations or resorptions in CBA/Ca mice, but increased skeletal variations consistently in all exposure groups. Bioelectromagnetics 19:477–485, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We examined the separate and combined effects of 60 Hz sinusoidal magnetic fields (MFs) and a phorbol ester on protein kinase C (PKC) activity in HL60 cells. No enhancement in PKC activity was observed when a cell culture was exposed to a 1.1 mT (rms) MF alone or to a combination of MF and 2 μM phorbol 12-myristate 13-acetate (PMA) for 1 h. In a second set of experiments, cells were preexposed to a less than optimal concentration of PMA (50 nM) for 45 min, followed by a 15 min exposure to both PMA and MF. The data showed a greater decrease in cytosolic PKC activity and a larger increase in membrane activity than was induced by either 1 h PMA treatment alone or PMA and sham MF exposure. One logical conclusion from these data is that MFs may be acting in a synergistic manner on a pathway that has already been activated. Therefore, we suggest that MFs, rather than producing biological effects by a new pathway or mechanism of interaction, exert their effect(s) by interacting with already functioning reactions or pathways. If correct, the question of an MF's mechanism of interaction refocuses on how weak fields might enhance or depress a molecular reaction in progress, rather than on finding a new transduction pathway. Bioelectromagnetics 19:469–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

11.
The biophysical mechanism of magnetic fields (MFs) acting on living systems is not clear. Previous research showed that, similar to epidermal growth factor (EGF), MF exposure induced EGF receptor (EGFR) clustering and activated EGFR signaling. In this study, we investigated whether MF exposure induced the changes in physical characteristics of EGF and downstream effects of EGF and EGFR interaction. The phase-interrogation surface plasmon resonance (SPR) sensing analyses showed that 50 Hz MF exposure at 4.0 mT for 1 h induced reversible relative permittivity changes of EGF solution. However, compared with sham-exposed EGF solution, the MF-exposed EGF solution did not affect the binding of EGF to EGFR, nor the cell viability and EGFR clustering in human amniotic epithelial cells (FL cells). Our data suggest that cellular EGFR clustering response to MF exposure might not be a result of changes in relative permittivity of EGF in cell culture solution. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

12.
Zeng Q  Ke X  Gao X  Fu Y  Lu D  Chiang H  Xu Z 《Bioelectromagnetics》2006,27(4):274-279
Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.  相似文献   

13.
On the basis of previous experience with biological effects of electromagnetic fields a potential effect of homogeneous sinusoidal magnetic field (50Hz, 10mT) on energy state of rat skeletal muscle was investigated. Two different total body exposures to magnetic field were selected: (1) repeated 1 hour exposure, 2 times a week for 3 months, and (2) acute 1.5 hour exposure (and the appropriate control groups). Important energy metabolites (adenosine triphosphate – ATP, creatine phosphate, creatine, lactate, pyruvate and inorganic phosphate) were analysed by enzymatic and spectroscopic methods in musculus gracilis cranialis.On the basis of the concentration of important energy metabolites the apparent Gibbs free energy of ATP hydrolysis and creatine charge was calculated. Our results demonstrate no influence of this low frequency magnetic field on the level of important energy metabolites in rat skeletal muscle. The conclusion of this study is that neither repeated exposure nor the acute exposure of rats to the sinusoidal magnetic field of given parameters has any important influence on the energy state of the skeletal muscle.  相似文献   

14.

Background

It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257–264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT.

Methods

In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study.

Results

Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP.

Conclusion

No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.  相似文献   

15.
The in vitro cytomolecular technique, sister chromatid exchange (SCE), was applied to test the clastogenic potentiality of extremely low frequency (ELF) electromagnetic fields (EMFs) on human peripheral blood lymphocytes (HPBLs). SCE frequencies were scored in dividing peripheral blood lymphocytes (PBLs) from six healthy male blood donors in two rounds of experiments, R1 and R2, to determine reproducibility. Lymphocyte cultures in the eight experiments conducted in each round were exposed to 50 Hz sinusoidal (continuous or pulsed) or square (continuous or pulsed) MFs at field strengths of 1 microT or 1 mT for 72 h. A significant increase in the number of SCEs/cell in the grouped experimental conditions compared to the controls was observed in both rounds. The highest SCE frequency in R1 was 10.03 for a square continuous field, and 10.39 for a square continuous field was the second highest frequency in R2. DNA crosslinking at the replication fork is proposed as a model which could explain the mechanistic link between ELF EMF exposure and increased SCE frequency.  相似文献   

16.
Inhibition of gap junctional intercellular communication (GJIC) is an important event in the multistage process of carcinogenesis. Our previous study showed that extremely low frequency (ELF) magnetic fields (MFs) inhibit GJIC, and enhance the suppression of GJIC induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) using a microinjection technique. In the present study, the inhibition of GJIC by ELF MFs and its threshold were further studied with fluorescence recovery after photobleaching (FRAP) technique. The results indicated that the FRAP technique is more sensitive in detecting the changes of GJIC than microinjection, and the threshold level is 0.4 mT for GJIC suppression by 50 Hz MFs. In addition, 0.2 mT, or more than 0.2 mT ELF can enhance the inhibition of GJIC induced by TPA. We concluded that MFs thus might act as a cancer promoter or work in synergy with other cancer promoters. The data also provide grounds to revise the reference standard of ELF MFs exposure.  相似文献   

17.
Zeng QL  Chiang H  Hu GL  Mao GG  Fu YT  Lu DQ 《Bioelectromagnetics》2003,24(2):134-138
We have previously demonstrated that exposure of Chinese hamster lung (CHL) cells to 50 Hz magnetic fields (MFs) and/or 12-O-tetradecanoylphorbol-3-acetate (TPA)-inhibited gap junctional intercellular communication (GJIC). To explore and compare the mechanisms of GJIC inhibition induced by extremely low frequency (ELF) MF and TPA, the number and localization of connexin 43 (C x 43) were studied. The localization of C x 43 was determined with indirect immunofluorescence histochemical analysis and detected by confocal microscopy after exposing CHL cells to 50 Hz sinusoidal magnetic field at 0.8 mT for 24 h without or with TPA (5 ng/ml) for the last 1 h. The C x 43 levels in nuclei and in cytoplasm were examined by Western blotting analysis. The results showed that the cells exposed to MF and/or TPA displayed individual plaques at regions of intercellular contact, which were fewer than the normal cells in number, while the number of C x 43 in cytoplasm increased and congregated near the nuclei. Western blot analysis further demonstrated the quantity of changes in location of Cx43. These results suggest that reduction of C x 43 at regions of intercellular contact may be one of the mechanisms of GJIC inhibition induced by ELF MF.  相似文献   

18.
Continuous and intermittent 50 Hz, 1.5 mT magnetic field with the exposure period of 4 h/day for 4 days was used to investigate its possible effect on adult guinea pigs. Tissues and plasma specimens were assessed by biochemical parameters. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO) levels and myeloperoxidase activity (MPO) were examined in plasma, liver and brain tissues. All parameters were determined by spectrophotometer. While intermittent magnetic field was effective on plasma lipid peroxidation, continuous magnetic field was found to be effective on plasma MPO activity and NO levels. Augmentation of lipid peroxidation was also observed in liver tissue both intermittent and continuous magnetic field exposures. These results indicate that both the intermittent and continuous magnetic field exposures affect various tissues in a distinct manner because of having different tissue antioxidant status and responses.  相似文献   

19.
This study was designed to assess the effect of 50 Hz electromagnetic fields (EMFs) on hippocampal cell cultures in the presence or absence of either sodium nitroprusside (SNP, a NO donor) or Fe2+ induced oxidative stress. One week old cultured rat hippocampal cells were exposed to either intermittent EMFs (IEMFs, 50 Hz, 0-5 mT, 1 min ON/OFF cycles, repeated 10 times every 2 h, 6 times/day during 48 h) or continuous EMFs (CEMFs, 50 Hz, 0-5 mT for 48 h). In a second set of experiments, the effect on such EMFs applied in combination with oxidative stress induced by 0.5 microM Fe2+ or SNP was estimated. At the end of both sets of experiments, cell mortality was assessed by lactate dehydrogenase measurements (LDH). Neither type of exposure to EMFs was observed to modify the basal rate of cell mortality. The exposure to CEMFs in presence of either NO or Fe2+ did not induce any significant increase in cell death. However, when cells were exposed to EMFs in the presence of NO, we observed a significant increase in cell death of 11 and 23% (P<0.001) at 2.5 and 5 mT, respectively. This effect had some specificity because IEMFs did not modify the effect of Fe2+ on cell mortality. Although the effects of IEMFs reported in this study were only observed at very high intensities, our model may prove valuable in trying to identify one cellular target of EMFs.  相似文献   

20.
Cellular effects of electromagnetic fields   总被引:3,自引:0,他引:3  
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号